Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References

Decision Trees

Nguyen Trung Hieu

Hanoi University of Science and Technology

May 29, 2019

HUST

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Outline					

1 Introduction

- 2 Decision-tree learning algorithms
 - Some notable algorithms
 - Building blocks of a DTL algorithm
 - Loss function
 - Stopping criteria
 - Pruning

3 Random forest

4 Implementations

5 Q&A

6 References

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References

Introduction

HUST

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Getting	started				

A mathematical theorem

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Decisior	n tree model				

"A decision tree uses a tree structure to represent a number of possible decision paths and an outcome for each path." $^{\rm 1}$

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References

Decision-tree learning algorithms

HUST

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Some notable alg	gorithms				
Some n	otable algorithms				

- Iterative Dichotomiser (ID3): for data with categorical features
 C4.5:
 - can handle both categorical and numerical features
- Classification And Regression Tree (CART): improved version of ID3

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Building blocks o	f a DTL algorithm				
Building	blocks of a DTL alg	orithm			

- Loss function entropy, gini index
- Stopping criteria
- Pruning

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Building blocks o	f a DTL algorithm				
Loss fui	nction				

For a the sample set *S* which contains *n* classes: $C_1, C_2, ..., C_n$. Let $p(C_i)$ be the portion of class C_i in S.

Entropy

$$H(S) = -\sum_{i=1}^{n} p(C_i) \log_2 p(C_i)$$

Gini index

$$G(S) = \sum_{i=1}^{n} p(C_i)(1 - p(C_i))$$

riga jon mang moa

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Building blocks o	f a DTL algorithm				
1 6					

Loss function

¹Elements of Statistical Learning, p.309

Nguyen Trung Hieu	HUST	Decision Trees	May 29, 2019	10/21

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Building blocks o	f a DTL algorithm				
Loss fui	nction				

"The truth is, most of the time it does not make a big difference: they lead to similar trees. Gini impurity is slightly faster to compute, so it is a good default. However, when they differ, Gini impurity tends to isolate the most frequent class in its own branch of the tree, while entropy tends to produce slightly more balanced trees."¹

Decision Trees

HUST

¹Hands-on machine learning with Scikit-Learn and TensorFlow, p.184

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Building blocks o	f a DTL algorithm				
Stoppin	g criteria				

- Entropy achieves zero.
- Number of samples belong to a note gets below a threshold.
- Reach tree depth limit.
- Reach number of nodes limit.
- Information gain is less than a threshold.

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Building blocks o	f a DTL algorithm				
Pruning					

- Reduced error pruning
- Cost complexity pruning

Introduction	Decision-tree learning algorithms ○0000000●	Random forest	Implementations	Q & A	References
Building blocks o	f a DTL algorithm				
Cost co	mplexity pruning				

Generate a series of trees $T_0, ..., T_m$. tree T_i is generated from tree T_{i-1} by replace a subtree by a leaf node.

The subtree to be removed is chosen by:

$$error_rate_per_pruned_leaf = \frac{err(prune(T, t), S - err(T, S)}{|leaves(T)| - |leaves(prune(T, t))|}$$
(1)

The function prune(T, t) define the tree gotten by remove sub tree t from T, err(T, S) is the error of tree T with respect to the set S

The best tree is chosen by a measure such as cross-validation

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
	0000000				

Random forest

HUST

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Motivati	on				

In order to reduce the effect of overfitting of a model with the training set, the output is averaged over the results of multiple models.

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References

Implementations

HUST

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
Implem	entations				

Decision tree with sklearn: Decision tree sklearn

Random forest with sklearn: Random forest sklearn

HUST

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References

Q & A

HUST

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References

References

HUST

Introduction	Decision-tree learning algorithms	Random forest	Implementations	Q & A	References
D - (

References

Grus Joel

Data science from scratch: first principles with python 2019 O'Reilly Media

Trevor Hastie, Robert Tibshirani, Jerome Friedman The Elements of Statistical Learning

2013 Springer

Vu Huu Tiep

Machine learning co ban https://machinelearningcoban.com/2018/01/14/id3/

Géron, Aurélien

Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems 2017 O'Reilly Media

t