
BOOST

Quoc-Tuan Le

Optimal seminar group, HUS

Overview

1 Introduction to BOOST

2 BOOST’s performance

3 BOOST’s graphic

Introduction to BOOST

What is BOOST

Boost provides free peer-reviewed portable C++ source

libraries that work well with the C++ Standard Library.

Boost libraries are intended to be widely useful, and usable

across a broad spectrum of applications. The Boost license

encourages both commercial and non-commercial use.

Boost works on almost any modern operating system,

including UNIX and Windows variants.

Boost welcomes and thrives on participation from a variety of

individuals and organizations. Many avenues for participation

are available in the Boost Community.

https://www.boost.org/community/

What is BOOST

Boost provides free peer-reviewed portable C++ source

libraries that work well with the C++ Standard Library.

Boost libraries are intended to be widely useful, and usable

across a broad spectrum of applications. The Boost license

encourages both commercial and non-commercial use.

Boost works on almost any modern operating system,

including UNIX and Windows variants.

Boost welcomes and thrives on participation from a variety of

individuals and organizations. Many avenues for participation

are available in the Boost Community.

https://www.boost.org/community/

What is BOOST

Boost provides free peer-reviewed portable C++ source

libraries that work well with the C++ Standard Library.

Boost libraries are intended to be widely useful, and usable

across a broad spectrum of applications. The Boost license

encourages both commercial and non-commercial use.

Boost works on almost any modern operating system,

including UNIX and Windows variants.

Boost welcomes and thrives on participation from a variety of

individuals and organizations. Many avenues for participation

are available in the Boost Community.

https://www.boost.org/community/

What is BOOST

Boost provides free peer-reviewed portable C++ source

libraries that work well with the C++ Standard Library.

Boost libraries are intended to be widely useful, and usable

across a broad spectrum of applications. The Boost license

encourages both commercial and non-commercial use.

Boost works on almost any modern operating system,

including UNIX and Windows variants.

Boost welcomes and thrives on participation from a variety of

individuals and organizations. Many avenues for participation

are available in the Boost Community.

https://www.boost.org/community/

Get Boost

The most reliable way to get a copy of Boost is to download a

distribution from SourceForge:

1. Download boost_1_67_0.tar.bz2.

2. In the directory where you want to put the Boost installation,

execute

tar −−bzip2 −xf /path/to/boost_1_67_0.tar.bz2

https://www.boost.org/users/history/version_1_67_0.html

Header-Only Libraries

The first thing many people want to know is, “how do I build

Boost?” The good news is that often, there’s nothing to build.

Nothing to Build?

Most Boost libraries are header-only: they consist entirely of

header files containing templates and inline functions, and

require no separately-compiled library binaries or special

treatment when linking.

Build a Simple Program Using Boost

The following program reads a sequence of integers from standard

input, uses Boost.Lambda to multiply each number by three, and

writes them to standard output:

1 #include <boost/lambda/lambda.hpp>

2 #include <iostream>

3 #include <iterator>

4 #include <algorithm>

5

6 int main()

7 {

8 using namespace boost::lambda;

9 typedef std::istream_iterator<int> in;

10

11 std::for_each(

12 in(std::cin), in(), std::cout << (_1 ∗ 3) << " ");

13 }

Build a Simple Program Using Boost

Copy the text of this program into a file called example.cpp.

Now, in the directory where you saved example.cpp, issue the

following command:

g++ −I path/to/boost_1_67_0 example.cpp −o example

To test the result, type:

echo 1 2 3 | ./example

Prepare to Use a Boost Library Binary

Prepare to Use a Boost Library Binary

If you want to use any of the separately-compiled Boost libraries,

you’ll need to acquire library binaries.

Issue the following commands in the shell:

cd path/to/boost_1_67_0

./bootstrap.sh −−help

Select your configuration options and invoke ./bootstrap.sh again

without the –help option. Unless you have write permission in your

system’s /usr/local/ directory, you’ll probably want to at least use

./bootstrap.sh −−prefix=path/to/installation/prefix

to install somewhere else. Also, consider using the –show-libraries

and –with-libraries=library-name-list options to limit the long wait

you’ll experience if you build everything. Finally,

./b2 install

Link Your Program to a Boost Library

we’ll use the following simple program that extracts the subject

lines from emails. It uses the Boost.Regex library, which has a

separately-compiled binary component.

1 #include <boost/regex.hpp>

2 #include <iostream>

3 #include <string>

4

5 int main(){

6 std::string line;

7 boost::regex pat("^Subject: (Re: |Aw:)∗(.∗)");

8

9 while (std::cin){

10 std::getline(std::cin, line);

11 boost::smatch matches;

12 if (boost::regex_match(line, matches, pat))

13 std::cout << matches[2] << std::endl;

14 }

15 }

Link Your Program to a Boost Library

There are two main ways to link to libraries:

1. You can specify the full path to each library:

g++ −I path/to/boost_1_67_0 example.cpp −o example \

~/boost/stage/lib/libboost_regex−gcc34−mt−d−1_36.a

2. You can separately specify a directory to search (with

-Ldirectory) and a library name to search for (with -llibrary,2

dropping the filename’s leading lib and trailing suffix (.a in

this case):

g++ −I path/to/boost_1_67_0 example.cpp −o example \

−L~/boost/stage/lib/ −lboost_regex−gcc34−mt−d−1_36

BOOST’s performance

Performance1

Graph type Algorithm Sparse graph Dense graph

LEMON LEMON 3.27s 1.13s

LEMON BGL 4.36s 1.07s

BGL LEMON 3.55s 1.56s

BGL BGL 4.90s 2.08s

Table 1: Benchmark results for the largest instances of the shortest path

problem combining LEMON and BGL implementations.

1The benchmark tests were performed on a machine with AMD Opteron Dual

Core 2.2 GHz CPU and 16 GB memory (1 MB cache), running openSUSE 10.1

operating system. The codes were compiled with GCC version 4.1.0 using -O3

optimization flag.

Heap performance

HHH
HHHType

n
10 100 1000 10000 100000

BinHeap 0.0001065 0.00076785 0.0084887 0.0862004 1.05576

Dheap 9.975e-05 0.0006841 0.0082312 0.0861992 1.05127

FibHeap 0.00011345 0.000767 0.0073001 0.0875208 1.05497

Table 2: Results for the Dijkstra algorithm (one to all) compiling with

BOOST heap options.

Heap performance

HH
HHHHType

n
10 100 1000 10000 100000

BinHeap 0.0001766 0.0010599 0.0097628 0.123566 1.46321

Dheap 0.0001497 0.00069505 0.00607185 0.0729028 0.819103

Table 3: Results for the Dijkstra algorithm (one to all) compiling with

BOOST heap options.

BOOST’s graphic

Graphic

0

2

1

17

3

3

2

1

4
2

1

1

1

Graphic

a

b

d

5 e

6

c

1

f

2

h

7

g

4

3

i

j

8

Graphic

A B

C

D

E
H

F

G

Graphic

www.boost.org

www.yahoogroups.com

sourceforge.netanubis.dkuug.dk

weather.yahoo.com

nytimes.com

www.boston.com

www.hp.comwww.lsc.nd.edu

www.lam-mpi.org

Graphic

Nobel

McKellar

9

Parry Sound

3

Dunchurch

11

Magnetawan

30

Horseshoe Lake

10

20

Rosseau

8

Bent River

8

Mactier

14

Glen Orchard

9

12

Kearny

20

Sprucedale

20

13

Novar

8

Bracebridge

15

18

Huntsville

15

5

30 30

	Introduction to BOOST
	BOOST's performance
	BOOST's graphic

