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Introduction to LEMON



What is LEMON

LEMON is an abbreviation for

Library for Efficient Modeling and Optimization in Networks.

It is an open source C++ template library for optimization

tasks related to graphs and networks.

It provides highly efficient implementations of common

data structures and algorithms.

It is maintained by the EGRES group at Eötvös Loránd

University, Budapest, Hungary.

https://lemon.cs.elte.hu/trac/lemon
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Building Graphs

Creating a graph

using namespace lemon;

ListDiGraph g;

Adding nodes and arcs

ListDigraph::Node u = g.addNode();

ListDigraph::Node v = g.addNode();

ListDigraph::Arc a = g.addArc(u,v);

Removing items

g.erase(a);

g.erase(v);



Iterators

Iteration on nodes

for(ListDigraph::NodeIt v(g); v != INVALID; ++v) {...}

Iteration on arcs

for(ListDigraph::ArcIt a(g); a != INVALID; ++a)

for(ListDigraph::OutArcIt a(g,v); a != INVALID; ++a)

for(ListDigraph::InArcIt a(g,v); a != INVALID; ++a)

Note: INVALID is a constant, which converts to each and every

iterator and graph item type.



Iterators

I Contrary to C++ STL, LEMON iterators are convertible to

the corresponding item types without having to use

operator*().

I This provides a more convenient interface.

I The program context always indicates whether we refer to the

iterator or to the graph item.

LEMON: Printing node identifiers

for(ListDigraph::NodeIt v(g); v!=INVALID; ++v)

std::cout « "dist[v] = " « dist[v] « std::endl;

BGL: Printing node identifiers

graph_t::vertex_iterator vi, vend;

for(tie(vi, vend) = vertices(g); vi != vend; ++vi)

std::cout « *vi « ": " « dist[*vi] « std::endl;



Iterators

I Contrary to C++ STL, LEMON iterators are convertible to

the corresponding item types without having to use

operator*().

I This provides a more convenient interface.

I The program context always indicates whether we refer to the

iterator or to the graph item.

LEMON: Printing node identifiers

for(ListDigraph::NodeIt v(g); v!=INVALID; ++v)

std::cout « "dist[v] = " « dist[v] « std::endl;

BGL: Printing node identifiers

graph_t::vertex_iterator vi, vend;

for(tie(vi, vend) = vertices(g); vi != vend; ++vi)

std::cout « *vi « ": " « dist[*vi] « std::endl;



Iterators

I Contrary to C++ STL, LEMON iterators are convertible to

the corresponding item types without having to use

operator*().

I This provides a more convenient interface.

I The program context always indicates whether we refer to the

iterator or to the graph item.

LEMON: Printing node identifiers

for(ListDigraph::NodeIt v(g); v!=INVALID; ++v)

std::cout « "dist[v] = " « dist[v] « std::endl;

BGL: Printing node identifiers

graph_t::vertex_iterator vi, vend;

for(tie(vi, vend) = vertices(g); vi != vend; ++vi)

std::cout « *vi « ": " « dist[*vi] « std::endl;



Iterators

I Contrary to C++ STL, LEMON iterators are convertible to

the corresponding item types without having to use

operator*().

I This provides a more convenient interface.

I The program context always indicates whether we refer to the

iterator or to the graph item.

LEMON: Printing node identifiers

for(ListDigraph::NodeIt v(g); v!=INVALID; ++v)

std::cout « "dist[v] = " « dist[v] « std::endl;

BGL: Printing node identifiers

graph_t::vertex_iterator vi, vend;

for(tie(vi, vend) = vertices(g); vi != vend; ++vi)

std::cout « *vi « ": " « dist[*vi] « std::endl;



Iterators

I Contrary to C++ STL, LEMON iterators are convertible to

the corresponding item types without having to use

operator*().

I This provides a more convenient interface.

I The program context always indicates whether we refer to the

iterator or to the graph item.

LEMON: Printing node identifiers

for(ListDigraph::NodeIt v(g); v!=INVALID; ++v)

std::cout « "dist[v] = " « dist[v] « std::endl;

BGL: Printing node identifiers

graph_t::vertex_iterator vi, vend;

for(tie(vi, vend) = vertices(g); vi != vend; ++vi)

std::cout « *vi « ": " « dist[*vi] « std::endl;



Maps

I The graph classes represent only the pure structure of the

graph.

I All associated data (e.g. node labels, arc costs or capacities)

are stored separately using so-called maps.

Creating maps

ListDigraph::NodeMap<std::string> label(g);

ListDigraph::ArcMap<int> cost(g);

Accessing map values

label[s] = "source";

cost[e] = 2*cost[f];
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Benefits of Graph Maps

I Efficient. Accessing map values is as fast as reading or

writing an array.

I Dynamic. You can create and destruct maps freely.

• Whenever you need, you can allocate a new map.

• When you leave its scope, the map will be deallocated

automatically.

I Automatic. The maps are updated automatically on the
changes of the graph.

• If you add new nodes or arcs to the graph, the storage of the

existing maps will be expanded and the new slots will be

initialized.

• If you remove items from the graph, the corresponding values

in the maps will be properly destructed.
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Compile your first code

1 #include <iostream>

2 #include <lemon/list_graph.h>

3 using namespace lemon;

4 using namespace std;

5 int main()

6 {

7 ListDigraph g;

8 ListDigraph::Node u = g.addNode();

9 ListDigraph::Node v = g.addNode();

10 ListDigraph::Arc a = g.addArc(u, v);

11 cout << "Hello World! This is LEMON library here." << endl;

12 cout << "We have a directed graph with " << countNodes(g) <<

↪→ " nodes "

13 << "and " << countArcs(g) << " arc." << endl;

14 return 0;

15 }



Build and Install from Source

LEMON is basically a large collection of C++ header files plus a

small static library.

Supporting various operating systems (Windows; Linux, Solaris,

OSX, AIX and other Unices), and compilers/IDEs (GCC, Intel

C++, IBM XL C++, Visual C++, MinGW, CodeBlocks).

I Installation guide for Linux

I Installation guide for Windows

https://lemon.cs.elte.hu/trac/lemon/wiki/InstallLinux
https://lemon.cs.elte.hu/trac/lemon/wiki/InstallCmake


Compile your first code

If LEMON is installed system-wide (into directory /usr/local):

g++ −o hello_lemon hello_lemon.cc −lemon

If LEMON is installed user-local into a directory (e.g. /lemon)

g++ −o hello_lemon −I ~/lemon/include hello_lemon.cc −L ~/lemon/lib −lemon

Then, you can run by the following command

./hello_lemon

If everything has gone well, then our program prints out the

followings

Hello World! This is LEMON library here.

We have a directed graph with 2 nodes and 1 arc.
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Heap data structure



Heap data structure

Definition

A Heap is a special tree-based data structure in which the tree is a

complete binary tree. Generally, Heaps can be of two types:

I Max-Heap: The root node hold the greatest value. Same

property is hold for any sub tree.

I Min-Heap: he root node hold the smallest value. Same

property is hold for any sub tree.



Examples of heap data structure

Example of a min-heap:



Binary Heap

Definition

A binary heap is a binary tree such that:

I It is a complete tree (as much complete as possible).

I It is either a Max Heap or Min Heap.



Representation of binary heap

Store the heap in an array arr such that:

1. The root element will be at arr[0].

2. arr[(i − 1)/2] returns the parent node.

3. arr[2i + 1] returns the left node.

4. arr[2i + 2] returns the right node.



Example

Example of a min-binary heap:



Implementation on heap

There are 5 fundamental operations can be implement on heap.

1. Return the smallest element on the heap.

2. Remove the smallest element on the heap.

3. Decrease the value of an element on the heap.

4. Insert a new element to the heap.

5. Delete an element on the heap.

Every of the above operations guaranteed to preserve the

structure of the heap.



getSmallest() operation

I Return the smallest element on the heap.

I The smallest element is exactly the root node.

I The complexity of the getSmallest() operation is O(1).



Heapify procedure

A heapify procedure is procedure to maintain the heap property.

Algorithm 1 Heapify procedure

1: procedure Heapify(arr, i)
2: l ← Left(i)
3: r ← Right(i)
4: if l ≤ arr.heap-size and arr[l ] < arr[r ] then
5: smallest ← l
6: else
7: smallest ← i
8: end if
9: if r ≤ arr.heap-size and arr[r ] < arr[smallest] then

10: smallest ← l
11: end if
12: if smallest 6= i then
13: exchange arr[i ] with arr[smallest]
14: HEAPIFY(arr, smallest)
15: end if
16: end procedure



Complexity of heapify procedure

I The heapify procedure is just a single direction traversal

through the heap tree.

I The worst-case is that the heapify traversal through every

layer of the heap tree.

I Hence, the running time of heapify procedure is O(log n).



extractMin() operation

I Remove the minimum element from the heap.

I Actually removing the root node of the heap.

I Call the heapify procedure to reconstruct the heap.

I The complexity of the extractMin() operation is O(log n).



decreaseKey() operation

I Decrease the value of a key on the heap.

I Call the heapify procedure to reconstruct the heap.

I The comlexity of the decreaseKey() operation is O(log n).



insert() procedure

I Add a new key at the end of the tree.

I Call the heapify procedure to reconstruct the heap.

I The comlexity of the insert() operation is O(log n).



delete() procedure

I Deleting a key from the procedure.

I Decrease the value of the chosen key to minus infinity by

using decreaseKey() operation.

I The root key now becomes the minus infinity key.

I Apply the extractMin() operation to get rid the current root

key.

I The complexity of delete() operation is O(log n).



Mergeable heap

Definition

A mergeable heap is a data structure that supports the following

operations:

I Create a new heap containing no elements.

I Inserts an element into the heap.

I Return the element whose hold the minimum value.

I Delete the element whose hold the minimum value.

I Create a new heap that contains all the elements of the

heap H1 and H2.

I Decrease the value of a chosen element in the heap.

I Delete an element from the heap.



Fibonacci heap

Definition

A fibonacci heap is a collection of rooted trees such that each

tree obeys the min-heap property.



Example of Fibonacci heap

Example of a min-Fibonacci heap:



Detail structure of Fibonacci heap

I Collection of rooted min-heap tree.

I A pointer to the minimum value.

I Circular doubly linked list to connect all tree roots.



Example of Fibonacci heap

More detail example of a min-Fibonacci heap:



Fibonacci heap insert() procedure

I Make a new tree with root is inserted element.

I Check whether if the new element has the smallest value.

I Hence, the complexity of insert() operation is O(1).



Fibonacci heap merge() procedure

I Simply merge two lists together.

I Hence, the complexity of merge() operation is O(1).



Fibonacci heap extractMin() procedure

Algorithm 2 extractMin procedure

1: procedure FIB-EXTRACT-MIN(H)
2: z = H.min
3: if z 6= NIL then
4: for each child x of z do
5: add x to the root lists of H
6: x .p = NIL
7: end for
8: end if
9: if H.n = 1 then

10: H.min = NIL
11: else
12: H.min = z .right
13: CONSOLIDATE (H)
14: end if
15: remove z from H
16: H.n = H.n − 1
17: end procedure



Heap consolidate procedure

I The consolidate procedure can be described as below:

1. Find two roots x and y which have the same degree. WLOG,

let x .key ≤ y .key .

2. Link y to x by making y a child of x .

3. Find the minimum root z . Let H.min = z .

I The amortized for each above operation take maximum

O(log n) time.

I Hence, the amortized complexity of consolidate procedure and

extractMin() procedure for so on is O(log n).



Fibonacci heap decreaseKey() procedure

Algorithm 3 decreaseKey procedure

1: procedure FIB-HEAP-DECREASE-KEY(H, x , k)
2: if k > x .key then error "new key is greater than current

key"
3: end if
4: x .key = k
5: y = x .p
6: if y 6= NIL and x .key < y .key then
7: CUT (H, x , y)
8: CASCADING − CUT (H, y)
9: end if

10: if x .key < H.min.key then
11: H.min = x
12: end if
13: end procedure



Fibonacci heap decreaseKey() procedure

The CUT function in decreaseKey() procedure

Algorithm 4 CUT procedure

1: procedure CUT(H, x , y)
2: remove x from the child list of y , decrementing y .degree
3: add x to the root list of H
4: x .p = NIL
5: x .mark = FALSE
6: end procedure



Fibonacci heap decreaseKey() procedure

The CASCADING-CUT function in decreaseKey() procedure

Algorithm 5 CASCADING-CUT procedure

1: procedure CASCADING-CUT(H, y)
2: z = y .p
3: if z 6= NIL then
4: if y .mark == FALSE then
5: y .mark = TRUE
6: else
7: CUT (H, y , z)
8: CASCADING − CUT (H, z)
9: end if

10: end if
11: end procedure



Fibonacci heap decreaseKey() procedure

The amortized complexity of decreaseKey() procedure is O(1).



Fibonacci heap delete() procedure

I Using the same argument as for the binary heap.

I Hence, the amortized complexity of delete() operation is

O(log n).



comparison between binary heap and Fibonacci heap

The running time of each operation is being compared via the

below table:



Application of heap data structure

I As a sorting algorithm.

I To create a priority queues, which is used in many algorithm
such as:

• Prim’s algorithm for finding minimum spanning tree.

• Dijkstra algorithm for finding all pair shortest path.

• Perform better than search tree.



Good page for data visualization

This page contains some fancy for data visualization.

I Heap

I Binomal Queue

I Fibonaci Heaps

I Leftist Heap

I Skew Heap

I . . .

https://www.cs.usfca.edu/~galles/visualization/Heap.html
https://www.cs.usfca.edu/~galles/visualization/BinomialQueue.html
https://www.cs.usfca.edu/~galles/visualization/FibonacciHeap.html
https://www.cs.usfca.edu/~galles/visualization/LeftistHeap.html
https://www.cs.usfca.edu/~galles/visualization/SkewHeap.html


LEMON’s performance



Performance1

ously induced by the efficiency of the applied graph, map, and heap data structures.
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Fig. 7. Benchmark results for the Dijkstra algorithm.

The performance results for the maximum flow problem instances are presented

in Figure 8. Each library provides an implementation of the push-relabel algorithm

of Goldberg and Tarjan with various heuristics [19]. This algorithm is one of the

fastest solution methods, but its practical efficiency highly depends on the applied

heuristics, and the three implementations differ in this aspect. In these tests, LEDA

clearly outperformed BGL, but LEMON turned out to be even more efficient than

LEDA. It was about two times faster on almost all instances.
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Fig. 8. Benchmark results for maximum flow algorithms.

Figure 9 shows the results for the minimum cost flow algorithms. In this case,

only LEMON and LEDA could be compared because BGL does not implement

a solution method for this problem, though it has been among the plans of the

developers for a long time.

LEMON features various algorithms for the minimum cost flow problem. The

two most efficient methods are the cost scaling algorithm [18,20] and the network

simplex algorithm [1,12]. As LEDA also implements the cost scaling algorithm,

the same method was chosen for LEMON. The efficiency of this algorithm also

depends on the application of various practical heuristics, in which the libraries

differ. According to these tests, LEDA was slower than LEMON by a factor between

1.7 and 2.1 except for the small instances. Moreover, it failed with “cost overflow”

B. Dezső et al. / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 23–4540

Figure 1: Benchmark results for the Dijkstra algorithm.
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LEMON features various algorithms for the minimum cost flow problem. The

two most efficient methods are the cost scaling algorithm [18,20] and the network

simplex algorithm [1,12]. As LEDA also implements the cost scaling algorithm,

the same method was chosen for LEMON. The efficiency of this algorithm also

depends on the application of various practical heuristics, in which the libraries

differ. According to these tests, LEDA was slower than LEMON by a factor between

1.7 and 2.1 except for the small instances. Moreover, it failed with “cost overflow”

B. Dezső et al. / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 23–4540

Figure 2: Benchmark results for maximum flow algorithms.
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error message on the largest two sparse networks, thus running time data is omitted

for them.
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Fig. 9. Benchmark results for minimum cost flow algorithms.

Since LEMON and BGL are generic and open source libraries, we could imple-

ment graph adaptor classes that make it possible to run LEMON algorithms on

BGL graph data structures and BGL algorithms on LEMON graph data struc-

tures. Table 1 contains benchmark results of such comparisons. The perfor-

mance of the Dijkstra algorithm is measured on the largest problem instances for

all combinations of the LEMON and BGL implementations (SmartDigraph and

adjacency list<vecS, vecS, directedS, ...> were used as before). The bi-

nary heap data structures were considered as parts of the algorithm implementa-

tions. However, the property maps are strongly related to the graph data structures,

thus they were exchanged together with the graphs. Note that the differences in

the design decisions of the libraries could have a huge effect on the performance of

fundamental data structures (see Sections 2.1, 2.3, 3.1).

Graph type Algorithm Sparse graph Dense graph

LEMON LEMON 3.27s 1.13s

LEMON BGL 4.36s 1.07s

BGL LEMON 3.55s 1.56s

BGL BGL 4.90s 2.08s

Table 1
Benchmark results for the largest instances of the shortest path problem combining LEMON and BGL

implementations.

These results verify that LEMON’s SmartDigraph implementation is signifi-

cantly faster than the adjacency list data structure of BGL. Moreover, the Dijk-

stra algorithm of LEMON also proved to be more efficient, probably because of the

better implementation of the heap data structure. The BGL graph type with the

BGL algorithm implementation was clearly the slowest combination.

Apart from the general graph types, all the three libraries provide more efficient

static graph implementations, which were also tested. Table 2 compares the per-

formance of Dijkstra’s algorithm using the general and static graph types of the

B. Dezső et al. / Electronic Notes in Theoretical Computer Science 264 (5) (2011) 23–45 41

Figure 3: Benchmark results for minimum cost flow algorithms.
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Graph type Algorithm Sparse graph Dense graph

LEMON LEMON 3.27s 1.13s

LEMON BGL 4.36s 1.07s

BGL LEMON 3.55s 1.56s

BGL BGL 4.90s 2.08s

Table 1: Benchmark results for the largest instances of the shortest path

problem combining LEMON and BGL implementations.

1The benchmark tests were performed on a machine with AMD Opteron Dual

Core 2.2 GHz CPU and 16 GB memory (1 MB cache), running openSUSE 10.1

operating system. The codes were compiled with GCC version 4.1.0 using -O3

optimization flag.



Heap performance

HH
HHH

HHType

n
10 100 1000

BinHeap 0.000857 0.01636 0.1152

QuadHeap 0.000847 0.01748 0.113

Dheap 0.000872 0.01652 0.1156

FibHeap 0.001063 0.01932 0.1372

PairingHeap 0.001153 0.022 0.1764

RadixHeap 0.000992 0.02948 0.1956

BinomialHeap 0.0003 0.01632 0.1094

BucketHeap 0.000545 0.02976 0.218

Table 2: Results for the Dijkstra algorithm compiling with LEMON heap

options.
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