Maximum flow - Minimum cut (Part II)

Quan Hoang

November 22-29, 2018

Outline

Extensions of max flow problem

Appplications of max flow - min cut problem

Real coding

Extensions of max flow problem

Some solved cases

- * Vertex with capacity.
- * Maximum flow in undirected graph.
- * Multi-sources and multi-sinks1

¹explained in the Application section

Other cases

* Time related flow.

* Sink nodes with desired source nodes.

Л

Appplications of max flow - min

cut problem

SECTION 7.5

7. NETWORK FLOW II

bipartite matching

- disjoint paths
- extensions to max flow
- survey design
- ▶ airline scheduling
- ▶ image segmentation
- project selection
- ▶ baseball elimination

Matching

Def. Given an undirected graph G = (V, E), subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.

ŝ

Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max-cardinality matching.

7

Bipartite matching: max-flow formulation

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from *L* to *R*, and assign infinite (or unit) capacity.
- Add unit-capacity edges from s to each node in L.
- Add unit-capacity edges from each node in R to t.

Nonbipartite matching

Problem. Given an undirected graph, find a max-cardinality matching.

· Structure of nonbipartite graphs is more complicated.

• But well understood. [Tutte-Berge formula, Edmonds-Galai]

• Blossom algorithm: $O(n^4)$. [Edmonds 1965]

• Best known: $O(m n^{1/2})$. [Micali-Vazirani 1980, Vazirani 1994]

PATHS, TREES, AND FLOWERS

JACK EDMONDS

 Introduction. A graph G for purposes here is a finite set of elements called vertices and a finite set of elements called edges such that each edge meets exactly two vertices, called the end-points of the edge. An edge is said to join its end-points.

A matching in G is a subset of its edges such that no two meet the same vertex. We describe an efficient algorithm for finding in a given graph a matching of maximum cardinality. This problem was posed and partly solved by C. Berge; see Sections 3.7 and 3.8.

COMBINATORICA Akadémisi Kiadó – Springer-Verlag

Combinatorica 14 (1) (1994) 71-109

A THEORY OF ALTERNATING PATHS AND BLOSSOMS FOR PROVING CORRECTNESS OF THE $O(\sqrt{V}E)$ GENERAL GRAPH MAXIMUM MATCHING ALGORITHM

VIJAY V. VAZIRANI¹

Received December 30, 1989 Revised June 15, 1993

SECTION 7.6

7. NETWORK FLOW II

- bipartite matching
- disjoint paths
- extensions to max flow
- survey design
- ▶ airline scheduling
- ▶ image segmentation
- project selection
- ▶ baseball elimination

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \rightarrow t$ paths.

Fx. Communication networks.

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \rightarrow t$ paths.

Ex. Communication networks.

Max-flow formulation. Assign unit capacity to every edge.

Theorem. Max number of edge-disjoint $s \rightarrow t$ paths = value of max flow. Pf. \leq

- Suppose there are k edge-disjoint $s \rightarrow t$ paths P_1, \dots, P_k .
- Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0.
- Since paths are edge-disjoint, *f* is a flow of value *k*. •

Max-flow formulation. Assign unit capacity to every edge.

Theorem. Max number of edge-disjoint $s \rightarrow t$ paths = value of max flow.

Pf. ≥

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0–1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by flow conservation, there exists an edge (u, v) with f(u, v) = 1
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths. •

Network connectivity

Def. A set of edges $F \subseteq E$ disconnects t from s if every $s \rightarrow t$ path uses at least one edge in F.

Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \rightarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Pf. ≤

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- Every $s \rightarrow t$ path uses at least one edge in F.
- Hence, the number of edge-disjoint paths is $\leq k$.

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \rightarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Pf. ≥

- Suppose max number of edge-disjoint paths is k.
- Then value of max flow = k.
- Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- |F| = k and disconnects t from s. •

SECTION 7.7

7. NETWORK FLOW II

- bipartite matching
- disjoint paths
- extensions to max flow
- survey design
- ▶ airline scheduling
- ▶ image segmentation
- project selection
- ▶ baseball elimination

Network flow II: quiz 4

Which extensions to max flow can be easily modeled?

- A. Multiple sources and multiple sinks.
- B. Undirected graphs.
- **C.** Lower bounds on edge flows.
- **D.** All of the above.

Multiple sources and sinks

Def. Given a digraph G = (V, E) with edge capacities $c(e) \ge 0$ and multiple source nodes and multiple sink nodes, find max flow that can be sent from the source nodes to the sink nodes.

flow network G

Multiple sources and sinks: max-flow formulation

- Add a new source node s and sink node t.
- For each original source node s_i add edge (s, s_i) with capacity ∞ .
- For each original sink node t_i , add edge (t_i, t) with capacity ∞ .

Claim. 1-1 correspondence betweens flows in G and G'.

Circulation with supplies and demands

Def. Given a digraph G = (V, E) with edge capacities $c(e) \ge 0$ and node demands d(v), a circulation is a function f(e) that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ (capacity)
- For each $v \in V$: $\sum_{e \text{ in to } v} f(e) \sum_{e \text{ out of } v} f(e) = d(v)$ (flow conservation)

Circulation with supplies and demands: max-flow formulation

- Add new source s and sink t.
- For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
- For each v with d(v) > 0, add edge (v, t) with capacity d(v).

Claim. G has circulation iff G' has max flow of value $D = \sum_{v: d(v) > 0} d(v) = \sum_{v: d(v) < 0} -d(v)$ saturates all edges leaving s and entering t flow network G'

demand

Circulation with supplies and demands

Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V, E, c, d), there does not exist a circulation iff there exists a node partition (A, B) such that $\Sigma_{v \in B} d(v) > cap(A, B)$.

Pf sketch. Look at min cut in G'.

demand by nodes in B exceeds supply of nodes in B plus max capacity of edges going from A to B

Circulation with supplies, demands, and lower bounds

Def. Given a digraph G = (V, E) with edge capacities $c(e) \ge 0$, lower bounds $\ell(e) \ge 0$, and node demands d(v), a circulation f(e) is a function that satisfies:

• For each $e \in E$: $\underbrace{\ell(e) \leq f(e)} \leq c(e)$ (capacity) • For each $v \in V$: $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (flow conservation)

Circulation problem with lower bounds. Given (V, E, ℓ, c, d) , does there exist a feasible circulation?

Circulation with supplies, demands, and lower bounds

Max-flow formulation. Model lower bounds as circulation with demands.

- Send $\ell(e)$ units of flow along edge e.
- · Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a circulation in G'. Moreover, if all demands, capacities, and lower bounds in G are integers, then there exists a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff $f'(e) = f(e) - \ell(e)$ is a circulation in G'.

SECTION 7.10

7. NETWORK FLOW II

- bipartite matching
- disjoint paths
- extensions to max flow
- survey design
- airline scheduling
- ▶ image segmentation
- project selection
- ▶ baseball elimination

Image segmentation.

- · Divide image into coherent regions.
- · Central problem in image processing.

Ex. Separate human and robot from background scene.

Foreground / background segmentation.

- Label each pixel in picture as belonging to foreground or background.
- V = set of pixels, E = pairs of neighboring pixels.
- $a_i \ge 0$ is likelihood pixel i in foreground.
- $b_i \ge 0$ is likelihood pixel i in background.
- p_{ij}≥ 0 is separation penalty for labeling one of i
 and j as foreground, and the other as background.

Goals.

- Accuracy: if $a_i > b_i$ in isolation, prefer to label i in foreground.
- Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.
- Find partition (A,B) that maximizes: $\sum_{i\in A}a_i + \sum_{j\in B}b_j \sum_{\substack{(i,j)\in E\\|A\cap\{i,j\}|=1}}p_{ij}$

Formulate as min-cut problem.

- · Maximization.
- · No source or sink.
- · Undirected graph.

Turn into minimization problem.

• Maximizing
$$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \ |A \cap \{i,j\} | = 1}} p_{ij}$$

· is equivalent to minimizing

$$\left(\sum_{i \in V} a_i \ + \ \sum_{j \in V} b_j\right) \ - \ \sum_{i \in A} a_i \ - \ \sum_{j \in B} b_j \ + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$
 a constant

• or alternatively
$$\sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

59

Formulate as min-cut problem G' = (V', E').

- · Include node for each pixel.
- Use two antiparallel edges instead of undirected edge.
- Add source *s* to correspond to foreground.
- Add sink t to correspond to background.

edge in G

two antiparallel edges in G^\prime

Consider min cut (A, B) in G'.

• A =foreground.

$$cap(A,B) \ = \ \sum_{j \in B} a_j \ + \ \sum_{i \in A} b_i \ + \sum_{\substack{(i,j) \in E \\ i \in A, \ j \in B}} p_{ij} \qquad \qquad \text{if i and j on different sides,} \\ p_{ij} \text{ counted exactly once}$$

· Precisely the quantity we want to minimize.

Grabcut image segmentation

Grabcut. [Rother-Kolmogorov-Blake 2004]

Carsten Rother*

Vladimir Kolmogorov[†] Microsoft Research Cambridge, UK Andrew Blake‡

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

Real coding

Spyder

References

Robert Sedgewick & Kevin Wayne. Algorithms, 4th Edition.

Addison-Wesley.

Slides at https://algs4.cs.princeton.edu/lectures/

Kleinberg, J., & Tardos, E. (2006). The algorithm design. Pearson, Addison-Wesley.

Slides at

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Martin Skutella. An Introduction to Network Flows over time.