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Extensions of max flow problem
Appplications of max flow - min cut problem

Real coding



Extensions of max flow problem



Some solved cases

* Vertex with capacity.
* Maximum flow in undirected graph.
* Multi-sources and multi-sinks®

Lexplained in the Application section



+ Time related flow.
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* Sink nodes with desired source nodes.



Appplications of max flow - min
cut problem
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Matching

Def. Given an undirected graph G = (V, E), subset of edges MCE
is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.




Bipartite matching

Def. A graph Gis bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G=(L U R, E), find a max-
cardinality matching.

matching: 1-1',2-2', 3-4', 4-5'



Bipartite matching: max-flow formulation

* Create digraph G'=(LURU {s,t}, E").

* Direct all edges from L to R, and assign infinite (or unit) capacity.
* Add unit-capacity edges from s to each node in L.

+ Add unit-capacity edges from each node in R to .
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Nonbipartite matching

Problem. Given an undirected graph, find a max-cardinality matching.
Structure of nonbipartite graphs is more complicated.
+ But well understood. [Tutte-Berge formula, Edmonds—Galai]
* Blossom algorithm: O@*.  [Edmonds 1965]
* Best known: O(m n'?). [Micali-Vazirani 1980, Vazirani 1994]
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Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G =(V, E) and two nodes
s and ¢, find the max number of edge-disjoint s~ paths.

Ex. Communication networks.
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Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G =(V, E) and two nodes
s and ¢, find the max number of edge-disjoint s~ paths.

Ex. Communication networks.
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Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. Max number of edge-disjoint s~ paths = value of max flow.
Pf. <

* Suppose there are k edge-disjoint s~¢ paths Py, ..., P;.

* Set f(e) =1 if e participates in some path P;; else set f(e) =0.

* Since paths are edge-disjoint, fis a flow of value k. =



Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. Max number of edge-disjoint s~ paths = value of max flow.
Pf. =
* Suppose max flow value is k.
* Integrality theorem = there exists 0-1 flow f of value k.
* Consider edge (s, u) with f(s,u)=1.
- by flow conservation, there exists an edge (u, v) with f(u,v) =1
- continue until reach ¢, always choosing a new edge
* Produces k (not necessarily simple) edge-disjoint paths.

can eliminate cycles

O 0 O to get simple paths
in O(mn) time if desired
1 1 1 1 (flow decomposition)
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Network connectivity

Def. A set of edges F C E disconnects ¢ from s if every s~t path uses
at least one edge in F.

Network connectivity. Given a digraph G =(V, E) and two nodes s and ¢,
find min number of edges whose removal disconnects ¢ from s.
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Menger’s theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~¢ paths
equals the min number of edges whose removal disconnects ¢ from s.

Pf. <
* Suppose the removal of FC E disconnects ¢ from s, and |F|=k.
* Every s~t path uses at least one edge in F.
* Hence, the number of edge-disjoint paths is < k. =



Menger’s theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~¢ paths
equals the min number of edges whose removal disconnects ¢ from s.

Pf. >
* Suppose max number of edge-disjoint paths is k.
* Then value of max flow = %.
* Max-flow min-cut theorem = there exists a cut (4, B) of capacity .
* Let F be set of edges going from A to B.
* |F|=k and disconnects ¢t from s. =
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Network flow II: quiz 4 P

Which extensions to max flow can be easily modeled?

A. Multiple sources and multiple sinks.
B. Undirected graphs.
C. Lower bounds on edge flows.

D. All of the above.
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Multiple sources and sinks

Def. Given a digraph G =(V, E) with edge capacities c(e) =0 and multiple
source nodes and multiple sink nodes, find max flow that can be sent
from the source nodes to the sink nodes.

flow network G @ 9 O 6 @
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Multiple sources and sinks: max-flow formulation

* Add a new source node s and sink node t.
* For each original source node s; add edge (s, s;)) with capacity .
* For each original sink node 7, add edge (7, f) with capacity o.

Claim. 1-1 correspondence betweens flows in G and G'.

flow network G’ @ 9 Q 6 @

[ 27 @
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Circulation with supplies and demands

Def. Given a digraph G =(V, E) with edge capacities c(e) =0 and
node demands d(v), a circulation is a function f(e) that satisfies:

* Foreache€E: 0 < f(e) = cle) (capacity)
* ForeachvevV: Z fle) — Z fle) = d(v) (flow conservation)
e in to v e out of v

(supply node)

flow network G -8 -6
O Q flow capacity
6/7 1/7 l /
4/10 6/6 2/4 749

7 @F—1——0 O— +/+—3Q n
10 0
(demand node) (transshipment node)
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Circulation with supplies and demands: max-flow formulation

* Add new source s and sink .
* For each v with d(v) <0, add edge (s, v) with capacity —d(v).
* For each v with d(v) >0, add edge (v, ?) with capacity d(v).

Claim. G has circulation iff G’ has max flow of value D = > dw) = Y —d(v)

v: d(v)>0 \ v: d(v)<0
saturates all edges
M leaving s
suppl
; . 6 — pply and entering 7
flow network G’ —8/ \—QG
7

10
\o/ \ demand
a4



Circulation with supplies and demands

Integrality theorem. If all capacities and demands are integers, and there
exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V,E,c,d), there does not exist a circulation iff there exists
a node partition (A, B) such that £, zd(v) > cap(A, B).

\

Pf sketch. Look at min cutin G'. demand by nodes in B exceeds
supply of nodes in B plus
max capacity of edges going from A to B
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Circulation with supplies, demands, and lower bounds

Def. Given a digraph G =(V, E) with edge capacities c(e) =0, lower bounds

L(e) 20, and node demands d(v), a circulation f(e) is a function that satisfies:

* Foreache€E: |Le) =< f(e) |= cle) (capacity)

* Foreachvev: > fle — Y  f(e) = d() (flow conservation)

ein to v e out of v

Circulation problem with lower bounds. Given (V,E, ¢, c,d), does
there exist a feasible circulation?

46



Circulation with supplies, demands, and lower bounds

Max-flow formulation. Model lower bounds as circulation with demands.
* Send £(e) units of flow along edge e.
+ Update demands of both endpoints.

lower bound upper bound

capacity
N '
O—ra—® Q71—
d(v) d(w) d(v)+2 d(w) -2
flow network G flow network G’

Theorem. There exists a circulation in G iff there exists a circulation in G'.

Moreover, if all demands, capacities, and lower bounds in G are integers,
then there exists a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) — £(e) is a circulation in G'.
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Image segmentation

Image segmentation.
- Divide image into coherent regions.
+ Central problem in image processing.

Ex. Separate human and robot from background scene.




Image segmentation

Foreground / background segmentation.

+ Label each pixel in picture as belonging to

foreground or background. <

* V= set of pixels, E = pairs of neighboring pixels. e

* a; = 0 is likelihood pixel i in foreground.
* b; = 0 is likelihood pixel i in background.

* p;= 0 is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
* Accuracy: if a; > b; in isolation, prefer to label i in foreground.
* Smoothness: if many neighbors of i are labeled foreground,
we should be inclined to label i as foreground.
* Find partition (4, B) that maximizes: Z“’? + Z b — Z Pij

i€A jeB i,j)EE
foreground  background \AEW{]i)j}\—l



Image segmentation

Formulate as min-cut problem.
* Maximization.
* No source or sink.
* Undirected graph.

Turn into minimization problem.

- Maximizing 2. + > bi — > by
i€A JEB (i,§)€E
| An{i, =1

+ is equivalent to minimizing

Zai s ij — Zai — ij + Z Pij

7 \iev jev icA jeB (i.)eB
a constant [AN{3,5}|=1
- oralternatively a4 + Y b + > py
jEB i€EA (i,§)EE

|AN{3,5}=1 59



Image segmentation

Formulate as min-cut problem G'=(V',E’).
* Include node for each pixel.
« Use two antiparallel edges instead of

undirected edge.

* Add source s to correspond to foreground.

* Add sink ¢ to correspond to background.

edge in G
O—n—0

two antiparallel edges in G’
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Image segmentation

Consider min cut (4,B) in G'.
+ A= foreground.

cap(A, B) Za] + Zbi + Z Dij

jEB i€EA (i,5)€EE if i and j on different sides,

i€A, jeB pij counted exactly once

+ Precisely the quantity we want to minimize.




Grabcut image segmentation

Grabcut. [ Rother-Kolmogorov-Blake 2004 ]

“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother” Viadimir Kolmogorov™ Andrew Blake®
Microsoft Research Cambridge, UK

Figure 1: Three examples of GrabCut . The user drags a rectangle loosely around an object. The object is then extracted automatically.



Real coding




Spyder

& Spyder (Python 3.6)
File Edit Search Source Run Debug Consoles Projects Tools View Help

O BRE@ pHBEDPE NCEsEpE B X

Editor - F:\Python_coding\Maxflow_mincutiCreate_graph.py 1

=i x Create_graph.py X Find_path.py X Update_flow_and_residual.py X Solve_maxflow_mincut.py X |4

1 1mport numpy as np
2 import random

def set_a_random_capacity(np_array, in_vertex, out_vertex,capacity_max):

random_capacity = random.randint(1,capacity max)
np_array[in_vertex,out_vertex] = random_capacity
np_arraylout_vertex,in_vertex] = np.nan

return np_array

create_graph (number_vertices,number_edges,capacity_max):
tnw

1f number edges 1s too large, graph will be completed
™

max_number_edges = number_vertices®(number_vertices) / 2
ratio = number_edges / max_number_esdges
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