Maximum flow - Minimum cut (Part 1)

Quan Hoang
November 15, 2018

The problem in the Cold War

Definition of the problem

Ford-Fulkerson algorithm

How to improve Ford-Fulkerson algorithm

Better algorithm for max flow problems

The problem in the Cold War

Mincut application (RAND 1950s)

"Free world" goal. Cut supplies (if cold war turns into real war).

223 o]

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)

Definition of the problem

Flow network

A flow network is a tuple G=(V,E,s.t,c¢).
* Digraph (V, E) with source s€V and sink t€ V.
* Capacity c(e) >0 for each e € E. \

assume all nodes are reachable from s

Intuition. Material flowing through a transportation network;
material originates at source and is sent to sink.
capacity

NI
NN
@{w ~T

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r€ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A,B) = Z c(e)

e out of A

capacity = 10+5+15:

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r€ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A, B) = Z c(e)

e out of A

oo
)
(~)

> ()

/ don’t include edges

from Bto A

capacity:10+8+16: ‘_IGq‘\’,/

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s€ A and r€ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

cap(A,B) = Z c(e)

e out of A

Min-cut problem. Find a cut of minimum capacity.

N

capacity:10+8+10: '—

Network flow: quiz 1

Which is the capacity of the given st-cut?
A. 11 20+25-8-11-9-6)
B. 34 8+11+9+6)
C. 45 (20+25)
D

79 20+25+8+11+9+6)

g]\L 16\4/25 i!f

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache¢€E: 0 < fle) < cle) [capacity]
* ForeachvevV-{s,i}: > fle) = Y fle [flow conservation]
e in to v e out of v
flow capacity
inflowatv = 5+5+0 =10
5/9 outflowatv = 10+0 =10
Q \5 1 s
o\ s / %

N

5/3)T_10/10—) t
7 KN
@ ois \Q\

/s

10/16

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache¢€E: 0 < fle) < cle) [capacity]
* ForeachveEV—{s,}: Y. fle) = > f(e) [flow conservation]
e in to v e out of v

Def. The value of a flow f is: wal(f) = Y fle) = Y fle)

e out of s ein to s
5/9
\\Q f// J‘//
) s (4
5/ 5 m—p 5/8 10/10 @
s, \\°
AN

0/
/s
value = 5+10+10 =@ \

10/16

Maximum-flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 < fle) < cle) [capacity]
* ForeachveEV—{s,}: Y. fle) = > f(e) [flow conservation]
e in to v e out of v

Def. The value of a flow f is: wal(f) = Y fle) = Y fle)

e out of s ein to s

Max-flow problem. Find a flow of maximum value.

8/9

Q 2 S

A\ s =

\ 7 /
R s (4
5/5 m—p 8/8 10/10 @
7 Q
Y 8 o\

6 A

Z s
value = 10+5+ 13 = \

13/16

Ford-Fulkerson algorithm

Greedy Algorithm

Toward a max-flow algorithm

Greedy algorithm.

+ Start with f(e) =0 for each edge e € E.

flow network G and flow f

.

U 0/2

@ o0

flow capacity
N/
0/4

/

Q

o 0/6 -
o /

0/9 O 0/10

value of flow

/
@ 0

Toward a max-flow algorithm

Greedy algorithm.

* Find an s~¢ path P where each edge has f(e) < c(e).

flow network G and flow f
0/6 o

Q/ o
Q\\ 0/2 25 75

o 0/9\~Q_w_,@o

Toward a max-flow algorithm

Greedy algorithm.

* Augment flow along path P.

flow network G and flow f

8
0/10 O 0/9 C)-ﬁ/lo_)@ 0+8=8

Toward a max-flow algorithm

Greedy algorithm.

+ Repeat until you get stuck.

flow network G and flow f

0/4

O B 29/2 LR

Q

0/6

0/10 O ©/9

>

o

~
‘o

10
+/10mp(1) 8+2=10

Toward a max-flow algorithm

Greedy algorithm.

+ Repeat until you get stuck.

flow network G and flow f

O o

N\

@ 10+6=16

Toward a max-flow algorithm

Greedy algorithm.
+ Start with f(e) =0 for each edge e € E.
* Find an s~¢ path P where each edge has f(e) < c(e).
* Augment flow along path P.
+ Repeat until you get stuck.

ending flow value = 16

flow network G and flow f

Q——Q

@ 6/10 O 8/9 O 10/10

Toward a max-flow algorithm

Greedy algorithm.
+ Start with f(e) =0 for each edge e € E.
* Find an s~¢ path P where each edge has f(e) < c(e).
* Augment flow along path P.
+ Repeat until you get stuck.

but max-flow value = 19

flow network G and flow f

“&

@ 9/10 O 9/9 O 10/10

Why the greedy algorithm fails

Q. Why does the greedy algorithm fail?
A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.
* The unique max flow has f*(v,w) =0.
* Greedy algorithm could choose s—v—w—t as first augmenting path.

flow network G

Bottom line. Need some mechanism to “undo” a bad decision.

Residual graph - Augmenting path

Residual network

Original edge. ¢=(u,v) € E. original flow network G

* Flow f(e). @ 617 @

* Capacity c(e). / \

flow capacity

Reverse edge. ereverse = (y, y).
* “Undo” flow sent.

residual network Gt residual
Residual capacity. 4 capacity
7 11 v
(©) cle) — f(e) ifeeFE /
Ccrl€e) = . . . 6
f f(e) 1f ereverbe 6 E \
reverse edge
edges with positive

residual capacity

Residual network. Gf= v, Ef, S, t, Cf). where flow on a reverse edge

negates flow on
0 Ef ={e:f(e)< cle)} U {°: f(e) > 0}/ corresponding forward edge

+ Key property: f'is a flow in G,iff f+f'is a flow in G.

Augmenting path

Def. An augmenting path is a simple s~z path in the residual network G;.

Def. The bottleneck capacity of an augmenting path P is the minimum
residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G;,.
Then, after calling f' <= AUGMENT(f, ¢, P), the resulting f' is a flow and
val(f') = val(f) + bottleneck(Gy, P).

AUGMENT(, ¢, P)

O < bottleneck capacity of augmenting path P.
FOREACH edgee € P:

IF(e €E) f(e) < f(e) + .

ELSE f(ereverse) < f(ereverse) — §.

RETURN f.

Network flow: quiz 2 9

Which is the augmenting path of highest bottleneck capacity?
AL A-F—-G—H
B. A-B—-C—D—H
C A—-F—-B—-G—H
D

A-F—-B—-G—=C—=D—H

residual capacity

2 8/ /E\f/ 3

. NG

©
w)

5 target 2

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
+ Start with f(e) =0 for each edge e € E.
* Find an s~t path P in the residual network G;.
* Augment flow along path P.
+ Repeat until you get stuck.

FORD-FULKERSON(G)

FOREACH edge e EE: f(e) < 0.
Gy < residual network of G with respect to flow f.
WHILE (there exists an s~t path P in Gy)

f < AUGMENT(f, c, P).

Update G. augmenting path

RETURN f.

Ford-Fulkerson algorithm demo

network G and flow f

o)

<:> 0/10

residual network G

N

@

0/2

flow

0/4

“&

0/9

capacity

Q

0/6

O

value of flow

/
0/10 @ 0

residual capacity

4

[4

10 <:>

Ford-Fulkerson algorithm demo

network G and flow f

Q 0/4

e
) 3

@ 0/10 Q 0/9

residual network G

PG S—

0/6

‘o

O 10 e ()

Ford-Fulkerson algorithm demo

network G and flow f

@ 8+2=10

@. 04— Q)
o
\Q%\\Q 29/2 o 0/6 4
2 10
@ 0/10 O %/9 Q 8/10
residual network G
g Q
%
2 & 6 ‘o
% *
N

20

Ford-Fulkerson algorithm demo

network G and flow f

@

Q
S 2/2

\Q\

©

©/10

residual network G

0/4

“&

=/

6
®Q
6 6/6 —
/ Yo
O 10/10 @ 1046=16
‘o

>(

(o=

Ford-Fulkerson algorithm demo

network G and flow f

\Q\

@ /10

residual network G

N

(——>

6

N 0202 &

O ©/4

O 8/9

fixes mistake from
second augmenting path

/.
7

6/6

6

%
S e

10/10

@ 16+2=18

Ford-Fulkerson algorithm demo

network G and flow f

Q——Q

0/2 ® 6/6
/ s /

N
O

@ 8/10 Q 8/9 O 10/10 @ 1841=19

&
S o

residual network G

Ford-Fulkerson algorithm demo

network G and flow f
@ 2/+——Q)

Q 9 value of
N el
min cut OJ2 B/@ //0 max flow

o
\ /
9/10 O 9/9)O 10/10 @ 19

capacity =10+9=19

residual network G

Q ! Qe

nodes reachable from s 2 > 6 7
O

S -——0—0

The correctness of the algorithm

7. NETWORK FLow |

» max-flow min-cut theorem

g lmm Im Design

JON KLEINBERG - EVA TARDOS

SECTION 7.2

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (4, B).

val(f) = Y fe - ¥ £

e out of A ein to A

net flow across cut = 5+ 10 + 10 = 25

. 5/9 \

Q s S
A\ - =
7 7
\o\ s o\
QO ;@ s @—0/0P) valweorfow = 23
2 N
-

/s
@— o/ ./

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (4, B).

val(f) = Z 7@ = Z f(e)

e out of A ein to A

net flow across cut = 10 + 5 + 10 = 25

5/9
\\Q y//s $//
\0 ©
5/5+ 5/8 10/10 t value of flow
‘o \\°
23 N

10/16

25

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (4, B).

val(f) = Y fe - ¥ £

e out of A ein to A

net flow across cut = (10 +10 +5+10+0+0)-(5+5+0+0) =

—5 /9 —
/I\ edges from Bto A
5
0/4 $ e
< T T—IO/lo_)t value of flow

Q

N

0/4 0/15 \Q\

\¢

10/16

25

Network flow: quiz 3

Which is the net flow across the given cut?
A. 11 20+25-8-11-9-6)
26 20+22-8-4-4)

B
C. 42 (20+22)
D

45 (20 +25)
flow capacity
ﬁzwzo_» <8/8—>\/\—4/10—>)
/ 8/8 =, 4/9 4/8
.— —>.— 14/16 — 22/25_>fj:3

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (A, B) be any cut. Then,
the value of the flow fequals the net flow across the cut (4, B).

val(f) = 3 f& — Y. 5@

e out of A ein to A
Pf. va(f) = > fle) = Y fle)
e out of s ein to s
by flow conservation, all terms o > .
except for v=s are 0 - Z (Z f(e) - Z f(€)>
veEA e out of v e in to v

= > flo - Y fle.

e out of A einto A

Relationship between flows and cuts

Weak duality. Letf be any flow and (A, B) be any cut. Then, val(f) < cap(A, B).

val(f) = Y fle) = > fle)

e out of A ein to A
/<)
flow value
lemma e out ()f A
< E c(e)
e out of A
= cap(A,B) =

) M))
A \

/|’< TN, /‘ ‘

‘o

%
\G 1 \l \
é 15 —>() 778 —(/—9/107@ < -0 O 0

\cl\ \l/]5 \l—»‘

12/16 ——{)

capacity of cut = 30

IA

value of flow = 27

Certificate of optimality

Corollary. Let f be a flow and let (A, B) be any cut.
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

weak duality

Pf.
* For any flow f': val(f') < cap(A, B) =val(f).
* For any cut (A’,B'): cap(A',B') = val(f) = cap(A,B). =

AN

weak duality

M) 8/9 / N

) /|\ . |\ . /‘<‘
N AN : |

GE w1 (O w18 —3 w0110 D N .
N, ™ | / /!
/{y l 3/6 l \a\\Q 19
\;i;t— >/

value of flow = 28 = capacity of cut = 28

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

strong duality

MAXIMAL FLOW THROUGH A NETWORK

. B. Dantzig
D. R. Fulkerson

L. R. FORD, Jr. axp D. R. FUL

RSON

Introduction. The problem discussed in this paper was formulated by
T. Harris as follows:

“Consider a rail network connecting two cities by way of a number of
intermediate cities, where each link of the network has a number assigned to
it representing its capacity. Assuming a steady state condition, find a maximal
flow from one given city to the other.”

Jl |~-&szs.3t

ON THE MAX PLOW MIN CUT THEOREM OF NETWORKS

A Note on the Maximum Flow Through a Network”

P. ELIASY, A. FEINSTEIN}, AND C. E. SHANNON§

Summary ~This note discusses the problem of maximizing the from one terminal to the other in the original network
rate of flow from one terminal to another, through a network which s through at least one branch in the b In th
ull of a number of branches, each of which has a limited capa- P255¢S through at least one branch in the cut-set. In the
\ain result is a theorem: The maximum possible flow from network above, some examples of cut-sets are (d, ¢, f),
1=n to vight through a network 1§ equal to the minimum value among and (b, c, ¢, g, h), (d, g, h,). By a simple cut-set we will
s ¢ € 0, h), (d g,) v

imple cut-sets. This theorem is applied to solve a more general ot
problom, n which & mumber of npat nodes and a mumber of outpat AN & €U
nodes are used. 1

such um if any branch is omitted it is no
f) and (b, ¢, e, g, k) are simple
I ek ot i

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A4, B) such that cap(A, B) = val(f).

ii. fisa max flow.

if Ford—Fulkerson terminates,
then fis max flow

iii. There is no augmenting path with respect to f. «—

[i=ii]
* This is the weak duality corollary. =

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (A4, B) such that cap(A, B) = val(f).

ii. fisa max flow.

iii. There is no augmenting path with respect to f.

[ii = iii] We prove contrapositive: —iii = =ii.
* Suppose that there is an augmenting path with respect to f.
* Can improve flow f by sending flow along this path.
* Thus, f is not a max flow. =

Max-flow min-cut theorem

[iii=i]
* Let f be a flow with no augmenting paths.
* Let A be set of nodes reachable from s in residual network Gy
* By definition of A: s € A.
* By definition of flow £ ¢ & A. e P e

must have f(e) =0
original flow network G

val(f) = Z fle) — Z f(e)

e out of A ein to A R B

Z cle) — 0 O]

e out of A

flow value
lemma

= cap(A,B) =

edgee=(v,w) withvEA,wEB
must have f(e) = c(e)

Runtime of the algorithm

Analysis of Ford-Fulkerson algorithm (when capacities are integral)

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e)

and residual capacity c;(e) is an integer.

Pf. By induction on the number of augmenting paths. = consider cut A={s}
(assumes no parallel edges)

Theorem. Ford-Fulkerson terminates after at most val(f*) < nC

augmenting paths, where f* is a max flow.

Pf. Each augmentation increases the value of the flow by at least 1. =

Corollary. The running time of Ford—Fulkerson is O(mnC).

Pf. Can use either BFS or DFS to find an augmenting path in O(m) time. =
f(e) is an integer for every e

Integrality theorem. There exists an integral max flow f*.

Pf. Since Ford-Fulkerson terminates, theorem follows from integrality

invariant (and augmenting path theorem). =

How to improve Ford-Fulkerson
algorithm

Why need to improve the algorithm?

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

initialize with 0 flow

Q
QQ) O «——— flowl
@ <«—— capacity

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

1st augmenting path

N
& o
N 2,
\0 00

N
o &
7 o
(7 S

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

2nd qugmenting path

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

3rd augmenting path

x
Ve
L Vs
\0 00

7)(’l,
z, Q
[2) N

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

4th augmenting path

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

199th augmenting path

7o

9,

9

\QQ /00
/ o 1 \
v 1)

Q

Q

«§

7 9& 9?f Q

00 \Q

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

200th augmenting path

Q
s 2
N
\Q /00 /00
/ -+ 0 \
y 1)
Q
/7, %\ \Q Q
% N

N

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.

Q 7/,
N R , %
N 00
/ 0
v 1
Z Q
7, 00 ‘\Q Q
00 \0

Choosing good augmenting paths

Choose augmenting paths with:
+ Max bottleneck capacity (“fattest”). <—— how to find?
« Sufficiently large bottleneck capacity. «—— next
+ Fewest edges. «—— ahead

Theoretical Improvements in Algorithmic Efficiency

Dokl. Akad. Nauk SSSR Soviet Math. Dokl.
for Network Flow Problems Tom 194 (1970), No. 4 Vol. 11 (1970), No.5
JACK EDMONDS ALGORITHM FOR SOLUTION OF A PROBLEM OF MAXIMUM FLOW IN A NETWORK WITH
University of Waterloa, Waterlo, Ontario, Canada POWER ESTIMATION

. upC 518.5
AND E.A.DINIC

RICHARD M. KARP
Different variants of the formulation of the problem of maximal stationary flow in a network and
Cniversity of California, Berkeley, California its many applications are given in [1]. There also is given an algorithm solving the problem in the
case where the initial data are integers (or, what is equivalent, commensurable). In the general case
swsmuact. This paper presents new algorithms for the maximum flow problem, the Hiteheock this algorithm requires preliminary rounding off of the initial data, i.c. only an approximate solution
transportation problem, and the general minimum-cost flow problem. Upper bounds on the
numbers of steps in these algorithms are derived, and are shown to compare favorably with
upper bounds o5 the numbers of steps required by earlier algorithms

of the problem is possible. In this connection the rapidity of convergence of the algorithm is inverse-

Iy proportional to the relative precision.

Edmonds-Karp 1972 (USA) Dinitz 1970 (Soviet Union)

invented in response to a class
exercises by Adel’son-Vel'skif

41

Capacity scaling algorithm

Capacity-scaling algorithm

Overview. Choosing augmenting paths with “large” bottleneck capacity.
* Maintain scaling parameter A. \though not necessarily largest
* Let G¢(A) be the part of the residual network containing
only those edges with capacity = A.
* Any augmenting path in G;(A) has bottleneck capacity = A.

N ‘2, N ‘0,
Q ! O Q O
2, & 2 &

Gr Gr(A), A =100 w2

Capacity-scaling algorithm

CAPACITY-SCALING(G)

FOREACH edge e EE: f(e) < 0.

A < largest power of 2 < C.

WHILE (A = 1)

G (A) < A-residual network of G with respect to flow f.
WHILE (there exists an s~ path P in Gr(A))

f < AUGMENT(f, c, P).

Update G/'(A). A-scaling phase
A<—A/2.

RETURN f.

43

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter A is a power of 2.
Pf. Initially a power of 2; each phase divides A by exactly 2. =

Integrality invariant. Throughout the algorithm, every edge flow f(e) and
residual capacity c(e) is an integer.
Pf. Same as for generic Ford-Fulkerson. =

Theorem. If capacity-scaling algorithm terminates, then fis a max flow.
Pf.

+ By integrality invariant, when A=1 = G,(A) =G;.

* Upon termination of A =1 phase, there are no augmenting paths.

* Result follows augmenting path theorem =

a4

Capacity-scaling algorithm: analysis of running time

Lemma 1. There are 1 + |log, C| scaling phases.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let fbe the flow at the end of a A-scaling phase.
Then, the max-flow value < val(f) + m A.
Pf. Next slide.

Lemma 3. There are < 2m augmentations per scaling phase.

or equivalently,
Pf. at the end

* Let fbe the flow at the beginning of a A-scaling phase. SRS inglohase

* Lemma 2 = max-flow value =< val(f) +m (2 A).
* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The capacity-scaling algorithm takes O(m? log C) time.
Pf.
* Lemma 1 + Lemma 3 = O(mlog C) augmentations.

* Finding an augmenting path takes O(m) time. = s

Shortest argumenting paths

10

Shortest augmenting path

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges.

can find via BFS

SHORTEST-AUGMENTING-PATH(G)

FOREACHe EE: f(e) < 0.

Gy < residual network of G with respect to flow f.
WHILE (there exists an s~ path in Gy)

(P < BREADTH—FIRST—SEARCH(Gf).)
f < AUGMENT(f, c, P).
Update Gy.

RETURN f.

48

Shortest augmenting path: overview of analysis

Lemma 1. The length of a shortest augmenting path never decreases.
Pf. Ahead. AN

number of edges
Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.
Pf. Ahead.

Theorem. The shortest-augmenting-path algorithm takes O(m? n) time.
Pf.
* O(m) time to find a shortest augmenting path via BFS.
* There are = m n augmentations.
- at most m augmenting paths of length k «— Lemma 1 + Lemma 2
- at most n—1 different lengths =

N

augmenting paths are simple paths

49

Shortest augmenting path: analysis

Def. Given a digraph G =(V, E) with source s, its level graph is defined by:
* £(v) = number of edges in shortest s~v path.
s L;=(V,Eg) is the subgraph of G that contains only those edges (v,w) EE
with ew) = e(v) + 1.

graph G O O

©) O @) ®

level graph Lc

s @
@)
O
@

Network flow: quiz 5 e

Which edges are in the level graph of the following digraph?

A. D-—F.

B E—F.

C. Both A and B.
D

Neither A nor B.

source @ @ @ @ sink

Shortest augmenting path: analysis

Def. Given a digraph G =(V, E) with source s, its level graph is defined by:
* £(v) = number of edges in shortest s~v path.
s L;=(V,Eg) is the subgraph of G that contains only those edges (v,w) EE
with ew) = e(v) + 1.

Key property. P is a shortest s~v path in G iff P is an s~v path in L.

level graph Lc O O

Shortest augmenting path: analysis

Lemma 1. The length of a shortest augmenting path never decreases.
* Let fand f' be flow before and after a shortest-path augmentation.
* Let L; and Lg be level graphs of G and G,
* Only back edges added to G-
(any s~t path that uses a back edge is longer than previous length) =

level graph Lc O O

() > > () >

£=0 £=1 £=2 £=3

level graph L¢’ O O

Shortest augmenting path: analysis

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

+ At least one (bottleneck) edge is deleted from L; per augmentation.

» No new edge added to L; until shortest path length strictly increases. =

level graph Lc Q O

() > > () >

£=0 £=1 £=2 £=3

level graph L¢’ O O

©) @) @) ® "

Shortest augmenting path: review of analysis

Lemma 1. Throughout the algorithm, the length of a shortest augmenting
path never decreases.

Lemma 2. After at most m shortest-path augmentations, the length of a
shortest augmenting path strictly increases.

Theorem. The shortest-augmenting-path algorithm takes O(m? n) time.

Better algorithm for max flow
problems

Augmenting-path algorithms: summary

“ # augmentations m

1955

1972

1972

1985

1970

1970

1983

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

augmenting path

fattest path

capacity scaling

improved capacity scaling

shortest augmenting path

level graph

dynamic trees

m log (mC)

mlog C

mlog C

mn

O(mn C)

O(m? log n log (mC))
O(m? log C)
O(mn log C)

O(m? n)
O(mn?)

O(mnlogn)

fat paths

shortest paths

72

Maximum-flow algorithms: theory highlights

1951 simplex O(m n*C) Dantzig
1955 augmenting paths O(mn C) Ford-Fulkerson
1970 shortest augmenting paths O(mn?) Edmonds—Karp, Dinitz
1974 blocking flows o’ Karzanov
1983 dynamic trees O(m nlog n) Sleator-Tarjan
1985 improved capacity scaling O(m nlog C) Gabow
1988 push-relabel O(m n log (n*/ m)) Goldberg-Tarjan
1998 binary blocking flows O(m*? log (n* / m) log C) Goldberg-Rao
2013 compact networks O(m n) Orlin

2014 interior-point methods O(mm"? log C) Lee-Sidford
2016 electrical flows Om'" ¢ Madry
20xx “WD?

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C 73

Google Optimazation Tools

11

Maximum-flow algorithms: Google

= v\ Google Optimization Tools Q, SIGNIN
Products > Optimization > Reference cﬁ)
Contents Java

Classes ﬁ pgthon
C++ Reference: max_flow

This documentation is automatically generated.

An implementation of a push-relabel algorithm for the max flow problem.

In the following, we consider a graph G = (V,E,s,t) where V denotes the set of nodes (vertices) in
the graph, E denotes the set of arcs (edges). s and t denote distinguished nodes in G called
source and target. n = |V| denotes the number of nodes in the graph, and m = |[E| denotes the

number of arcs in the graph.

Each arc (v,w) is associated a capacity c(v,w).

78

References

[3 Robert Sedgewick & Kevin Wayne. Algorithms, 4th Edition.
Addison-Wesley.
Slides at https://algs4.cs.princeton.edu/lectures/

El Kleinberg, J., & Tardos, E. (2006). The algorithm design. Pearson,
Addison-Wesley.
Slides at
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

@ Martin Skutella. An Introduction to Network Flows over time.

12

	The problem in the Cold War
	Definition of the problem
	Ford-Fulkerson algorithm
	The algorithm
	The correctness of the algorithm
	Runtime of the algorithm

	How to improve Ford-Fulkerson algorithm
	Capacity scaling algorithm
	Shortest argumenting paths

	Better algorithm for max flow problems
	Google Optimazation Tools

