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The problem in the Cold War



"Free world" goal.  Cut supplies (if cold war turns into real war).

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

Mincut application (RAND 1950s)

7

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Definition of the problem



Flow network

A flow network is a tuple G = (V, E, s, t, c).

・Digraph (V, E) with source s ∈ V  and sink t ∈ V. 

・Capacity c(e) > 0 for each e ∈ E. 

 
Intuition.  Material flowing through a transportation network; 
material originates at source and is sent to sink.
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

 
Def.  Its capacity is the sum of the capacities of the edges from A to B. 
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

Def.  Its capacity is the sum of the capacities of the edges from A to B.  
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

 
Def.  Its capacity is the sum of the capacities of the edges from A to B.  

 
 
 
Min-cut problem.  Find a cut of minimum capacity. 
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Network flow:  quiz 1

 Which is the capacity of the given st-cut? 

A. 11  (20 + 25 − 8 − 11 − 9 − 6)

B. 34  (8 + 11 + 9 + 6) 

C. 45  (20 + 25)

D. 79  (20 + 25 + 8 + 11 + 9 + 6) 
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation]
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation] 

Def.  The value of a flow f  is:
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation] 

Def.  The value of a flow f  is:

Max-flow problem.  Find a flow of maximum value. 
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Ford-Fulkerson algorithm



Greedy Algorithm
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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+ 2 = 10

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.

 18

3 / 4

7 / 8

19

0 / 2
10 / 

10

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9

but max-flow value = 19

flow network G and flow f

s t



Q.  Why does the greedy algorithm fail? 

A.  Once greedy algorithm increases flow on an edge, it never decreases it. 

 
Ex.  Consider flow network G . 

・The unique max flow has f *(v, w) = 0. 

・Greedy algorithm could choose s→v→w→t  as first augmenting path. 

 
 
 
 
 
 
 
 
 
 
Bottom line.  Need some mechanism to “undo” a bad decision.

Why the greedy algorithm fails

 19

s

t

w

v

1

2

2

22

flow network G



Residual graph - Augmenting path
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Residual network

Original edge.  e = (u, v)  ∈  E. 

・Flow f (e). 

・Capacity c(e). 
 
Reverse edge.  ereverse = (v, u). 

・“Undo” flow sent. 

 
Residual capacity. 

 
 
 
 
 
Residual network.  Gf = (V, Ef , s, t, cf ). 

・Ef  = {e : f (e) <  c(e)}  ∪  {ereverse : f (e)  >  0}. 

・Key property:  f ʹ is a flow in Gf iff  f + f ʹ is a flow in G.
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Augmenting path

Def. An augmenting path is a simple s↝t path in the residual network Gf . 
 
Def. The bottleneck capacity of an augmenting path P is the minimum  
residual capacity of any edge in P. 

 
Key property.  Let f  be a flow and let P be an augmenting path in Gf .  
Then, after calling f ʹ ← AUGMENT( f, c, P), the resulting f ʹ is a flow and  
val( f ʹ) = val( f ) + bottleneck(Gf, P).

 21

AUGMENT( f, c, P)                          


δ  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E)  f (e)  ←  f (e)  +  δ.

ELSE         f (ereverse) ← f (ereverse)  –  δ.

RETURN  f.




Network flow:  quiz 2

Which is the augmenting path of highest bottleneck capacity?

A.  A → F → G → H 

B.  A → B → C → D → H  

C.  A → F → B → G → H

D.  A → F → B → G → C → D → H
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Ford–Fulkerson algorithm

Ford–Fulkerson augmenting path algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P in the residual network Gf . 

・Augment flow along path P. 

・Repeat until you get stuck.
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FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.

WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, c, P).

Update Gf.

RETURN  f.

augmenting path



Example
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Ford–Fulkerson algorithm demo
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Ford–Fulkerson algorithm demo
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Ford–Fulkerson algorithm demo
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Ford–Fulkerson algorithm demo
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Ford–Fulkerson algorithm demo
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Ford–Fulkerson algorithm demo
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Ford–Fulkerson algorithm demo
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The correctness of the algorithm
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7.  NETWORK FLOW I

‣ max-flow and min-cut problems 

‣ Ford–Fulkerson algorithm 

‣ max-flow min-cut theorem 

‣ capacity-scaling algorithm 

‣ shortest augmenting paths 

‣ Dinitz' algorithm 

‣ simple unit-capacity networks
SECTION 7.2



Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  
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Network flow:  quiz 3

Which is the net flow across the given cut? 

A.  11  (20 + 25 − 8 − 11 − 9 − 6) 

B.  26  (20 + 22 − 8 − 4 − 4) 

C.  42  (20 + 22) 

D.  45  (20 + 25)
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).  
 
 
 
 
Pf.
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Weak duality.  Let f  be any flow and (A, B) be any cut. Then, val( f ) ≤ cap(A, B). 
Pf.

Relationship between flows and cuts
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Certificate of optimality

Corollary.  Let f  be a flow and let (A, B) be any cut. 
If val( f )  = cap(A, B), then f  is a max flow and (A, B) is a min cut. 

 
Pf. 

・For any flow f ʹ:  val( f ʹ)  ≤  cap(A, B)  = val( f ).   

・For any cut (Aʹ, Bʹ):  cap(Aʹ, Bʹ)  ≥  val( f )  =  cap(A, B).  ▪
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Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
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1956 IRE TRANXACTIONX ON INFORiMATION THEORY 117 

A Note on the Maximum Flow Through a Network* 
P. ELIASt, A. FEINSTEINI, AND C. E. SHANNON! 

Summary--This note discusses the problem of maximizing the 
rate of flow from one terminal to another, through a network which 
consists of a number of branches, each of which has a !imited capa- 
city. The main result is a theorem: The maximum possible flow from 
left to right through a network is equal to the minimum value among 
all simple cut-sets. This theorem is applied to solve a more general 
problem, in which a number of input nodes and a number of output 
nodes are used. 

c 

ONSIDER a two-terminal network such as that 
of Fig. 1. The branches of the network might 
represent communication channels, or, more 

generally, any conveying system of limited capacity as, 
for example, a railroad system, a power feeding system, 
or a network of pipes, provided in each case it is possible 
to assign a definite maximum allowed rate of flow over a 
given branch. The links may be of two types, either one 
directional (indicated by arrows) or two directional, in 
which case flow is allowed in either direction at anything 
up to maximum capacity. At the nodes or junction points 
of the network, any redistribution of incoming flow into 
the outgoing flow is allowed, subject only to the re- 
striction of not exceeding in any branch the capacity, and 
of obeying the Kiichhoff law that the total (algebraic) 
flow into a node be zero. Note that in the case of infor- 
mation flow, this may require arbitrarily large delays at 
each node to permit recoding of the output signals from 
that node. The problem is to evaluate the maximum 
possible flow through the network as a whole, entering at 
the left terminal and emerging at the right terminal. 

0 

7 

-< 

3 

b 

5 cl 

I f 
Fig. 1 

The answer can be given in terms of cut-sets of the 
network. A cut-set of a two-terminal network is a set of 
branches such that when deleted from the network, the 
network falls into two or more unconnected parts with 
the two terminals in different parts. Thus, every path 

* Manuscript received by the PGIT, July 11, 1956. 
t Elec. Ena. Deot. and Res. Lab. of Electronics. Mass. Inst. 

Tech., CambrTdge, -Mass. 
1 Lincoln Lab., M.I.T., Lexington! Mass. 
5 Bell Telephone Labs., Murray Hill, N. J., and M.I.T., Cam- 

bridge, Mass. 

from one terminal to the other in the original network 
passes through at least one branch in the cut-set. In the 
network above, some examples of cut-sets are (d, e, f), 
and (b, c, e, g, h), (d, g, h, i) . By a simple cut-set we will 
mean a cut-set such that if any branch is omitted it is no 
longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple 
cut-sets while (d, g, h, ;) is not. When a simple cut-set is 
deleted from a connected two-terminal network, the net- 
work falls into exactly two parts, a left part containing the 
left terminal and a right part containing the right terminal. 
We assign a value to a simple cut-set by taking the sum of 
capacities of branches in the cut-set, only counting 
capacities, however, from the left part to the right part 
for branches that are unidirectional. Note that the 
direction of an unidirectional branch cannot be deduced 
from its appearance in the graph of the network. A branch 
is directed from left to right in a minimal cut-set if, and 
only if, the arrow on the branch points from a node in the 
left part of the network to a node in the right part. Thus, 
in the example, the cut-set (d, e, f) has the value 5 + 1 = 6, 
the cut-set (b, c, e, g, h) has value 3 + 2 + 3 + 2 = 10. 

Theorem: The maximum possible flow from left to right 
through a net,work is equal to the minimum value among 
all simple cut-sets. 

This theorem may appear almost obvious on physical 
grounds and appears to have been accepted without proof 
for some time by workers in communication theory. 
However, while the fact that this flow cannot be exceeded 
is indeed almost trivial, the fact that it can actually be 
achieved is by no means obvious. We understand that 
proofs of the theorem have been given by Ford and 
Fulkerson’ and Fulkerson and Dantzig.2 The following 
proof is relatively simple, and we believe different in 
principle. 

To prove first that the minimum cut-set flow cannot be 
exceeded, consider any given flow pattern and a minimum- 
valued cut-set C. Take the algebraic sum X of flows from 
left to right across this cut-set. This is clearly less than or 
equal to the value V of the cut-set, since the latter would 
result if all paths from left to right in C were carrying 
full capacity, and those in the reverse direction were 
carrying zero. Now add to S the sum of the algebraic 
flows into all nodes in the right-hand group for the cut- 
set C. This sum is zero because of the Kirchhoff law 
constraint at each node. Viewed another way, however, 
we see that it cancels out each flow contributing to S, 
and also that each flow on a branch with both ends in the 

1 L. Ford, Jr. and D. R. Fulkerson, Can. J. Math.; to be published. 
* G. B. Dantsig and D. R. Fulkerson, “On the Max-Flow Min- 

Cut Theorem of Networks,” in “Linear Inequalities,” Ann. Math. 
Studies, no. 38, Princeton, New Jersey, 1956. 

strong duality



Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut. 

Augmenting path theorem. A flow f  is a max flow iff no augmenting paths. 

 
Pf. The following three conditions are equivalent for any flow f : 
  i. There exists a cut (A, B) such that cap(A, B)  =  val( f ). 
 ii.  f  is a max flow. 

iii. There is no augmenting path with respect to f. 
 
[ i ⇒ ii ] 

・This is the weak duality corollary.  ▪
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Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut. 

Augmenting path theorem. A flow f  is a max flow iff no augmenting paths. 

Pf. The following three conditions are equivalent for any flow f : 
  i. There exists a cut (A, B) such that cap(A, B)  =  val( f ). 
 ii.  f  is a max flow. 

iii. There is no augmenting path with respect to f. 

[ ii ⇒ iii ]   We prove contrapositive:  ¬ iii ⇒ ¬ ii. 

・Suppose that there is an augmenting path with respect to f. 

・Can improve flow f  by sending flow along this path. 

・Thus,  f  is not a max flow.   ▪
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[ iii ⇒ i ]  

・Let f  be a flow with no augmenting paths. 

・Let A be set of nodes reachable from s in residual network Gf. 

・By definition of A:  s ∈ A. 

・By definition of flow f:  t ∉ A.

=
�

e Qmi Q7 A

c(e) � 0
<latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI="></latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI="></latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI="></latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI="></latexit>

Max-flow min-cut theorem
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original flow network G
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Runtime of the algorithm
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Analysis of Ford–Fulkerson algorithm (when capacities are integral)

Assumption.  Every edge capacity c(e) is an integer between 1 and C. 

 
Integrality invariant.  Throughout Ford–Fulkerson, every edge flow f (e)  
and residual capacity cf (e) is an integer. 

Pf.  By induction on the number of augmenting paths.  ▪ 
 
Theorem.  Ford–Fulkerson terminates after at most val( f *)  ≤  n C 
augmenting paths, where f * is a max flow. 

Pf.  Each augmentation increases the value of the flow by at least 1.   ▪ 
 
Corollary.  The running time of Ford–Fulkerson is O(m n C). 
Pf.  Can use either BFS or DFS to find an augmenting path in O(m) time.   ▪ 
 
Integrality theorem.  There exists an integral max flow f *. 

Pf.  Since Ford–Fulkerson terminates, theorem follows from integrality 

invariant (and augmenting path theorem).  ▪
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consider cut A = { s } 
(assumes no parallel edges)

f(e) is an integer for every e



How to improve Ford-Fulkerson

algorithm



Why need to improve the algorithm?
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Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size.
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Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size. 
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Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size. 

 13

1

1

1

2nd augmenting path

0

0

1

1

1

0

100

100

10
0

10
0

t

s

v w



Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size. 
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Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size. 
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Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size. 
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Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size. 

 17

99

1

99

0

199th augmenting path

10
0

10
0

1

99

99

100

100

10
0

10
0

t

s

v w



Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size. 
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Ford–Fulkerson algorithm:  exponential-time example

Bad news.  Number of augmenting paths can be exponential in input size.
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Choosing good augmenting paths

Choose augmenting paths with: 

・Max bottleneck capacity (“fattest”). 

・Sufficiently large bottleneck capacity. 

・Fewest edges.
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Capacity-scaling algorithm

Overview.  Choosing augmenting paths with “large” bottleneck capacity. 

・Maintain scaling parameter Δ. 

・Let Gf (Δ) be the part of the residual network containing 
only those edges with capacity ≥  Δ. 

・Any augmenting path in Gf (Δ) has bottleneck capacity ≥  Δ.
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Capacity-scaling algorithm

 43

CAPACITY-SCALING(G)                          


FOREACH edge e ∈ E :  f (e) ← 0.

Δ  ← largest power of 2  ≤  C. 

WHILE (Δ  ≥  1)

Gf (Δ) ← Δ-residual network of G with respect to flow f .
WHILE (there exists an s↝t path P in Gf (Δ))

f ← AUGMENT( f, c, P).

Update Gf (Δ).

Δ ← Δ / 2. 

RETURN  f.


Δ-scaling phase



Capacity-scaling algorithm:  proof of correctness

Assumption.  All edge capacities are integers between 1 and C.  

 
Invariant.  The scaling parameter Δ is a power of 2. 

Pf.  Initially a power of 2; each phase divides Δ by exactly 2.  ▪ 
 
Integrality invariant.  Throughout the algorithm, every edge flow f (e) and  
residual capacity cf (e) is an integer. 

Pf.  Same as for generic Ford–Fulkerson.  ▪ 
 
Theorem.  If capacity-scaling algorithm terminates, then f is a max flow. 

Pf. 

・By integrality invariant, when Δ = 1  ⇒  Gf (Δ)  = Gf . 

・Upon termination of Δ = 1 phase, there are no augmenting paths. 

・Result follows augmenting path theorem   ▪
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Capacity-scaling algorithm:  analysis of running time

Lemma 1.  There are 1 + ⎣log2 C⎦ scaling phases. 

Pf.  Initially C / 2  <  Δ  ≤  C;  Δ decreases by a factor of 2 in each iteration.  ▪ 
 
Lemma 2.  Let f be the flow at the end of a Δ-scaling phase.  
Then, the max-flow value ≤  val( f ) + m Δ. 

Pf.  Next slide. 

 
Lemma 3.  There are ≤ 2m augmentations per scaling phase. 

Pf. 

・Let f be the flow at the beginning of a Δ-scaling phase. 

・Lemma 2  ⇒   max-flow value   ≤   val( f ) + m (2 Δ). 

・Each augmentation in a Δ-phase increases val( f ) by at least Δ.  ▪ 
 
Theorem.  The capacity-scaling algorithm takes O(m2 log C) time. 

Pf. 

・Lemma 1 + Lemma 3  ⇒  O(m log C) augmentations. 

・Finding an augmenting path takes O(m) time.  ▪
 45

or equivalently, 
at the end 

of a 2Δ-scaling phase
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Shortest augmenting path

Q.  How to choose next augmenting path in Ford–Fulkerson? 

A.  Pick one that uses the fewest edges.

 48

SHORTEST-AUGMENTING-PATH(G)                          
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

FOREACH e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path in Gf )

P ← BREADTH-FIRST-SEARCH(Gf ).

f  ← AUGMENT( f, c, P).

Update Gf.

RETURN  f.


can find via BFS



Shortest augmenting path:  overview of analysis

Lemma 1.  The length of a shortest augmenting path never decreases. 

Pf.  Ahead. 

 
Lemma 2.  After at most m shortest-path augmentations, the length of a 

shortest augmenting path strictly increases. 

Pf.  Ahead. 

 
Theorem.  The shortest-augmenting-path algorithm takes O(m2 n) time. 

Pf. 

・O(m) time to find a shortest augmenting path via BFS. 

・There are ≤  m n augmentations. 
- at most m augmenting paths of length k
- at most n−1 different lengths   ▪
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Lemma 1 + Lemma 2

augmenting paths are simple paths

number of edges



Shortest augmenting path:  analysis

Def.  Given a digraph G = (V, E) with source s, its level graph is defined by: 

・ℓ(v) = number of edges in shortest s↝v path. 

・LG = (V, EG) is the subgraph of G that contains only those edges (v, w) ∈ E 

with ℓ(w) = ℓ(v) + 1.
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Network flow:  quiz 5

Which edges are in the level graph of the following digraph? 

A.  D→F. 

B.  E→F. 

C.  Both A and B. 

D.  Neither A nor B.
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Shortest augmenting path:  analysis

Def.  Given a digraph G = (V, E) with source s, its level graph is defined by: 

・ℓ(v) = number of edges in shortest s↝v path. 

・LG = (V, EG) is the subgraph of G that contains only those edges (v, w) ∈ E 

with ℓ(w) = ℓ(v) + 1. 

 
 
Key property.  P is a shortest s↝v path in G iff P is an s↝v path in LG.
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Shortest augmenting path:  analysis

Lemma 1.  The length of a shortest augmenting path never decreases. 

・Let f and f ʹ be flow before and after a shortest-path augmentation. 

・Let LG and LG ʹ be level graphs of Gf and Gf ʹ . 
・Only back edges added to Gf ′ 

(any s↝t path that uses a back edge is longer than previous length)  ▪
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Lemma 2.   After at most m shortest-path augmentations, the length of a 

shortest augmenting path strictly increases.  

・At least one (bottleneck) edge is deleted from LG per augmentation. 

・No new edge added to LG until shortest path length strictly increases.  ▪

Shortest augmenting path:  analysis
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Shortest augmenting path:  review of analysis

Lemma 1.  Throughout the algorithm, the length of a shortest augmenting 

path never decreases. 

 
Lemma 2.  After at most m shortest-path augmentations, the length of a  
shortest augmenting path strictly increases. 

 
Theorem.  The shortest-augmenting-path algorithm takes O(m2 n) time.
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Better algorithm for max flow

problems



Augmenting-path algorithms:  summary

 72

year method # augmentations running time

1955 augmenting path n C O(m n C)

1972 fattest path m log (mC) O(m2 log n log (mC))

1972 capacity scaling m log C O(m2 log C)

1985 improved capacity scaling m log C O(m n log C)

1970 shortest augmenting path m n O(m2 n)

1970 level graph m n O(m n2 )

1983 dynamic trees m n O(m n log n )

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

fat paths

shortest paths



Maximum-flow algorithms:  theory highlights

 73

year method worst case discovered by

1951 simplex O(m n2 C) Dantzig

1955 augmenting paths O(m n C) Ford–Fulkerson

1970 shortest augmenting paths O(m n2) Edmonds–Karp, Dinitz

1974 blocking flows O(n3) Karzanov

1983 dynamic trees O(m n log n) Sleator–Tarjan

1985 improved capacity scaling O(m n log C) Gabow

1988 push–relabel O(m n log (n2 / m)) Goldberg–Tarjan

1998 binary blocking flows O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 compact networks O(m n) Orlin

2014 interior-point methods Õ(m m1/2 log C) Lee–Sidford

2016 electrical flows Õ(m10/7 C1/7) Mądry

20xx

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C



Google Optimazation Tools
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Maximum-flow algorithms:  Google

 78
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