
Maximum flow - Minimum cut (Part I)

Quan Hoang

November 15, 2018

1

Outline

The problem in the Cold War

Definition of the problem

Ford-Fulkerson algorithm

How to improve Ford-Fulkerson algorithm

Better algorithm for max flow problems

2

The problem in the Cold War

"Free world" goal. Cut supplies (if cold war turns into real war).

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

Mincut application (RAND 1950s)

7

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)

Definition of the problem

Flow network

A flow network is a tuple G = (V, E, s, t, c).

・Digraph (V, E) with source s ∈ V and sink t ∈ V.

・Capacity c(e) > 0 for each e ∈ E.

 
Intuition. Material flowing through a transportation network; 
material originates at source and is sent to sink.

 3

s t5

15

10
15

16

9

15

6

8 10

154

4 10

10

capacity

assume all nodes are reachable from s

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A and t ∈ B.

 
Def. Its capacity is the sum of the capacities of the edges from A to B.

 4

5s

15

10

t

capacity = 10 + 5 + 15 = 30

cap(A, B) =
�

e Qmi Q7 A

c(e)

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A and t ∈ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

10

 5

8

don’t include edges
from B to A

t

16
capacity = 10 + 8 + 16 = 34

s

cap(A, B) =
�

e Qmi Q7 A

c(e)

Minimum-cut problem

Def. An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A and t ∈ B.

 
Def. Its capacity is the sum of the capacities of the edges from A to B.

 
 
 
Min-cut problem. Find a cut of minimum capacity.

10

 6

s

10

t

capacity = 10 + 8 + 10 = 28

8

cap(A, B) =
�

e Qmi Q7 A

c(e)

Network flow: quiz 1

 Which is the capacity of the given st-cut?

A. 11 (20 + 25 − 8 − 11 − 9 − 6)

B. 34 (8 + 11 + 9 + 6)

C. 45 (20 + 25)

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

 7

812 9

8

161

capacity

s

86

25 t

1020

6 11

Maximum-flow problem

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

 8

0 / 4

0 / 4 0 / 15

10 /
10

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

10 / 16

 inflow at v = 5 + 5 + 0 = 10
outflow at v = 10 + 0 = 10

flow capacity

0 / 15

0 � f(e) � c(e)
�

e BM iQ v

f(e) =
�

e Qmi Q7 v

f(e)

Maximum-flow problem

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

Def. The value of a flow f is:

 9

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 15

value = 5 + 10 + 10 = 25

0 / 4

0 / 6

10 / 16

0 / 15

0 � f(e) � c(e)

val(f) =
�

e Qmi Q7 s

f(e) �
�

e BM iQ s

f(e)

�

e BM iQ v

f(e) =
�

e Qmi Q7 v

f(e)

Maximum-flow problem

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

Def. The value of a flow f is:

Max-flow problem. Find a flow of maximum value.

 10

0 / 4

10 /
10

10 / 105 / 5s

8 / 10

8 / 9

8 / 8

10 /
1013 / 15

0 / 15

value = 10 + 5 + 13 = 28

0 / 4

3 / 6

13 / 16

0 / 15

t

2 / 15

0 � f(e) � c(e)

val(f) =
�

e Qmi Q7 s

f(e) �
�

e BM iQ s

f(e)

�

e BM iQ v

f(e) =
�

e Qmi Q7 v

f(e)

Ford-Fulkerson algorithm

Greedy Algorithm

3

Toward a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for each edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

 12

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

flow network G and flow f

0 / 10 0

value of flow

0 / 10

flow capacity

Toward a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for each edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

 13

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

flow network G and flow f

s t

Toward a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for each edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

 14

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

+ 8 = 8—

8
—

—
8

8

flow network G and flow f

s t

+ 2 = 10

Toward a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for each edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

 15

0 / 6

0 / 4

8 / 8

0 / 10 8

0 / 10
0 / 2

8 /
10

8 / 100 / 9

—
10 2 —

2
—

10
—

flow network G and flow f

s t

Toward a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for each edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

 16

0 / 4

8 / 8

10

2 / 2
10 /

10

10 / 10

0 / 6

0 / 10

0 / 10

2 / 9

6 —

8
—

6
— + 6 = 16

6
—

flow network G and flow f

s t

Toward a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for each edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

 17

0 / 4

8 / 8

16

2 / 2
10 /

10

10 / 10

6 / 6

6 / 10

6 / 10

8 / 9

ending flow value = 16

flow network G and flow f

s t

Toward a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for each edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

 18

3 / 4

7 / 8

19

0 / 2
10 /

10

10 / 10

6 / 6

9 / 10

9 / 10

9 / 9

but max-flow value = 19

flow network G and flow f

s t

Q. Why does the greedy algorithm fail?

A. Once greedy algorithm increases flow on an edge, it never decreases it.

 
Ex. Consider flow network G .

・The unique max flow has f *(v, w) = 0.

・Greedy algorithm could choose s→v→w→t as first augmenting path.

 
 
 
 
 
 
 
 
 
 
Bottom line. Need some mechanism to “undo” a bad decision.

Why the greedy algorithm fails

 19

s

t

w

v

1

2

2

22

flow network G

Residual graph - Augmenting path

4

Residual network

Original edge. e = (u, v) ∈ E.

・Flow f (e).

・Capacity c(e).
 
Reverse edge. ereverse = (v, u).

・“Undo” flow sent.

 
Residual capacity.

 
 
 
 
 
Residual network. Gf = (V, Ef , s, t, cf).

・Ef = {e : f (e) < c(e)} ∪ {ereverse : f (e) > 0}.

・Key property: f ʹ is a flow in Gf iff f + f ʹ is a flow in G.

 20

u v

u v

residual
capacity

flow

6 / 17

capacity

original flow network G

residual network Gf

11

6

where flow on a reverse edge
 negates flow on

corresponding forward edge

cf (e) =

�
c(e) � f(e) B7 e � E

f(e) B7 e`2p2`b2 � E
reverse edge

edges with positive
residual capacity

Augmenting path

Def. An augmenting path is a simple s↝t path in the residual network Gf .
 
Def. The bottleneck capacity of an augmenting path P is the minimum  
residual capacity of any edge in P.

 
Key property. Let f be a flow and let P be an augmenting path in Gf .  
Then, after calling f ʹ ← AUGMENT(f, c, P), the resulting f ʹ is a flow and  
val(f ʹ) = val(f) + bottleneck(Gf, P).

 21

AUGMENT(f, c, P)
__

δ ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E) f (e) ← f (e) + δ.

ELSE f (ereverse) ← f (ereverse) – δ.

RETURN f.
__

Network flow: quiz 2

Which is the augmenting path of highest bottleneck capacity?

A. A → F → G → H

B. A → B → C → D → H

C. A → F → B → G → H

D. A → F → B → G → C → D → H

 22

87

8

2FE

residual capacity

A

86

3 H

D

G

69 C

7

target

B

source

FE

D

G

CB

5

5

H

5

5

45 5

Ford–Fulkerson algorithm

Ford–Fulkerson augmenting path algorithm.

・Start with f (e) = 0 for each edge e ∈ E.

・Find an s↝t path P in the residual network Gf .

・Augment flow along path P.

・Repeat until you get stuck.

 23

FORD–FULKERSON(G)
__
_

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.

WHILE (there exists an s↝t path P in Gf)

f ← AUGMENT(f, c, P).

Update Gf.

RETURN f.

augmenting path

Example

5

Ford–Fulkerson algorithm demo

 3

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G and flow f

0 / 10 0

value of flow

0 / 10

flow capacity

s t

2 6

10

4

9

residual network Gf

10

residual capacity

 10
 10 8

Ford–Fulkerson algorithm demo

 4

2 6

4

9

residual network Gf

10

 10

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G and flow f

0 / 10 0

0 / 10

s t

 10

10

8

8
—

8
—

8
—

+ 8 = 8

Ford–Fulkerson algorithm demo

 5

4
residual network Gf

10

s t

0 / 2
8 /

10 0 / 6

8 / 10

0 / 4

8 / 8

0 / 9

network G and flow f

0 / 10 8

0 / 10

8

8

8

9s

2
2

—
10 2 —

2
— + 2 = 10

 10 6

10
—

2 t

Ford–Fulkerson algorithm demo

 6

4
residual network Gf

s t

2 / 2
10 /

10
0 / 6

10 / 10

0 / 4

8 / 8

2 / 9

network G and flow f

0 / 10 10

0 / 10

8

2

2

10

 10

10 7s

 10 6

t

6 —

8
—

6
— + 6 = 16

6
—

Ford–Fulkerson algorithm demo

 7

residual network Gf

s t

2 / 2
10 /

10
6 / 6

10 / 10

0 / 4

8 / 8

8 / 9

network G and flow f

6 / 10 16

6 / 10

8

8

10

 10

1

6

6

 6

4

4s

 4

t

2

8
—

0 —

2
—

8
—

+ 2 = 18

fixes mistake from
second augmenting path

Ford–Fulkerson algorithm demo

 8

residual network Gf

s t

0 / 2
10 /

10
6 / 6

10 / 10

2 / 4

8 / 8

8 / 9

network G and flow f

8 / 10 18

8 / 10

8

10

 10 6

 8

2

2

8

1

2

s

 2

t2

8

9
—

9
—

7
—

3
—

9
—

+ 1 = 19

Ford–Fulkerson algorithm demo

 9

residual network Gf

s t

0 / 2
10 /

10
6 / 6

10 / 10

3 / 4

7 / 8

9 / 9

network G and flow f

9 / 10 19

9 / 10

10

 10 6

 9

2

3

9

9

1

s

 1

t1

7

1

nodes reachable from s

min cut
value of
max flow

capacity = 10 + 9 = 19

The correctness of the algorithm

6

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford–Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ Dinitz' algorithm

‣ simple unit-capacity networks
SECTION 7.2

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).

 25

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 15

value of flow = 25

0 / 4

0 / 6

10 / 16

0 / 15

net flow across cut = 5 + 10 + 10 = 25

val(f) =
�

e Qmi Q7 A

f(e) �
�

e BM iQ A

f(e)

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).

 26

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

net flow across cut = 10 + 5 + 10 = 25

value of flow = 25

val(f) =
�

e Qmi Q7 A

f(e) �
�

e BM iQ A

f(e)

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).

 27

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

net flow across cut = (10 + 10 + 5 + 10 + 0 + 0) – (5 + 5 + 0 + 0) = 25

edges from B to A

value of flow = 25

val(f) =
�

e Qmi Q7 A

f(e) �
�

e BM iQ A

f(e)

Network flow: quiz 3

Which is the net flow across the given cut?

A. 11 (20 + 25 − 8 − 11 − 9 − 6)

B. 26 (20 + 22 − 8 − 4 − 4)

C. 42 (20 + 22)

D. 45 (20 + 25)

 28

8 / 8
5 / 12

4 / 9

8 / 8

14 / 161 / 1

capacity

s

4 / 8
0 /

6

22 / 25 t

4 / 1020 / 20

1 / 6
4 / 11

flow

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then,  
the value of the flow f equals the net flow across the cut (A, B).
 
 
 
 
Pf.

 29

by flow conservation, all terms  
except for v = s are 0

▪

val(f) =
�

e Qmi Q7 A

f(e) �
�

e BM iQ A

f(e)

val(f) =
�

e Qmi Q7 s

f(e) �
�

e BM iQ s

f(e)

=
�

v�A

� �

e Qmi Q7 v

f(e) �
�

e BM iQ v

f(e)

�

val(f) =
�

e Qmi Q7 A

f(e) �
�

e BM iQ A

f(e)

Weak duality. Let f be any flow and (A, B) be any cut. Then, val(f) ≤ cap(A, B).
Pf.

Relationship between flows and cuts

 30

s t

0 / 4

10 /
10

9 / 105 / 5

8 / 10

8 / 9

7 / 8

2 / 15

10 /
10

12 / 15

0 / 4

2 / 6

12 / 16

0 / 15

0 / 15

s

15

5

10

t

value of flow = 27 capacity of cut = 30

flow value
lemma

≤

▪

val(f) =
�

e Qmi Q7 A

f(e) �
�

e BM iQ A

f(e)

�
�

e Qmi Q7 A

f(e)

�
�

e Qmi Q7 A

c(e)

= cap(A, B)

Certificate of optimality

Corollary. Let f be a flow and let (A, B) be any cut. 
If val(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

 
Pf.

・For any flow f ʹ: val(f ʹ) ≤ cap(A, B) = val(f).

・For any cut (Aʹ, Bʹ): cap(Aʹ, Bʹ) ≥ val(f) = cap(A, B). ▪

 31

s t

0 / 4

10 /
10

10 / 105 / 5

8 / 10

8 / 9

8 / 8

2 / 15

10 /
10

13 / 15

0 / 4

3 / 6

13 / 16

0 / 15

0 / 15

s

10

8 t

10

weak duality

value of flow = 28 capacity of cut = 28=

weak duality

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

 32

1956 IRE TRANXACTIONX ON INFORiMATION THEORY 117

A Note on the Maximum Flow Through a Network*
P. ELIASt, A. FEINSTEINI, AND C. E. SHANNON!

Summary--This note discusses the problem of maximizing the
rate of flow from one terminal to another, through a network which
consists of a number of branches, each of which has a !imited capa-
city. The main result is a theorem: The maximum possible flow from
left to right through a network is equal to the minimum value among
all simple cut-sets. This theorem is applied to solve a more general
problem, in which a number of input nodes and a number of output
nodes are used.

c

ONSIDER a two-terminal network such as that
of Fig. 1. The branches of the network might
represent communication channels, or, more

generally, any conveying system of limited capacity as,
for example, a railroad system, a power feeding system,
or a network of pipes, provided in each case it is possible
to assign a definite maximum allowed rate of flow over a
given branch. The links may be of two types, either one
directional (indicated by arrows) or two directional, in
which case flow is allowed in either direction at anything
up to maximum capacity. At the nodes or junction points
of the network, any redistribution of incoming flow into
the outgoing flow is allowed, subject only to the re-
striction of not exceeding in any branch the capacity, and
of obeying the Kiichhoff law that the total (algebraic)
flow into a node be zero. Note that in the case of infor-
mation flow, this may require arbitrarily large delays at
each node to permit recoding of the output signals from
that node. The problem is to evaluate the maximum
possible flow through the network as a whole, entering at
the left terminal and emerging at the right terminal.

0

7

-<

3

b

5 cl

I f
Fig. 1

The answer can be given in terms of cut-sets of the
network. A cut-set of a two-terminal network is a set of
branches such that when deleted from the network, the
network falls into two or more unconnected parts with
the two terminals in different parts. Thus, every path

* Manuscript received by the PGIT, July 11, 1956.
t Elec. Ena. Deot. and Res. Lab. of Electronics. Mass. Inst.

Tech., CambrTdge, -Mass.
1 Lincoln Lab., M.I.T., Lexington! Mass.
5 Bell Telephone Labs., Murray Hill, N. J., and M.I.T., Cam-

bridge, Mass.

from one terminal to the other in the original network
passes through at least one branch in the cut-set. In the
network above, some examples of cut-sets are (d, e, f),
and (b, c, e, g, h), (d, g, h, i) . By a simple cut-set we will
mean a cut-set such that if any branch is omitted it is no
longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple
cut-sets while (d, g, h, ;) is not. When a simple cut-set is
deleted from a connected two-terminal network, the net-
work falls into exactly two parts, a left part containing the
left terminal and a right part containing the right terminal.
We assign a value to a simple cut-set by taking the sum of
capacities of branches in the cut-set, only counting
capacities, however, from the left part to the right part
for branches that are unidirectional. Note that the
direction of an unidirectional branch cannot be deduced
from its appearance in the graph of the network. A branch
is directed from left to right in a minimal cut-set if, and
only if, the arrow on the branch points from a node in the
left part of the network to a node in the right part. Thus,
in the example, the cut-set (d, e, f) has the value 5 + 1 = 6,
the cut-set (b, c, e, g, h) has value 3 + 2 + 3 + 2 = 10.

Theorem: The maximum possible flow from left to right
through a net,work is equal to the minimum value among
all simple cut-sets.

This theorem may appear almost obvious on physical
grounds and appears to have been accepted without proof
for some time by workers in communication theory.
However, while the fact that this flow cannot be exceeded
is indeed almost trivial, the fact that it can actually be
achieved is by no means obvious. We understand that
proofs of the theorem have been given by Ford and
Fulkerson’ and Fulkerson and Dantzig.2 The following
proof is relatively simple, and we believe different in
principle.

To prove first that the minimum cut-set flow cannot be
exceeded, consider any given flow pattern and a minimum-
valued cut-set C. Take the algebraic sum X of flows from
left to right across this cut-set. This is clearly less than or
equal to the value V of the cut-set, since the latter would
result if all paths from left to right in C were carrying
full capacity, and those in the reverse direction were
carrying zero. Now add to S the sum of the algebraic
flows into all nodes in the right-hand group for the cut-
set C. This sum is zero because of the Kirchhoff law
constraint at each node. Viewed another way, however,
we see that it cancels out each flow contributing to S,
and also that each flow on a branch with both ends in the

1 L. Ford, Jr. and D. R. Fulkerson, Can. J. Math.; to be published.
* G. B. Dantsig and D. R. Fulkerson, “On the Max-Flow Min-

Cut Theorem of Networks,” in “Linear Inequalities,” Ann. Math.
Studies, no. 38, Princeton, New Jersey, 1956.

strong duality

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

 
Pf. The following three conditions are equivalent for any flow f :
 i. There exists a cut (A, B) such that cap(A, B) = val(f).
 ii. f is a max flow.

iii. There is no augmenting path with respect to f.
 
[i ⇒ ii]

・This is the weak duality corollary. ▪

 33

if Ford–Fulkerson terminates,
then f is max flow

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.

Augmenting path theorem. A flow f is a max flow iff no augmenting paths.

Pf. The following three conditions are equivalent for any flow f :
 i. There exists a cut (A, B) such that cap(A, B) = val(f).
 ii. f is a max flow.

iii. There is no augmenting path with respect to f.

[ii ⇒ iii] We prove contrapositive: ¬ iii ⇒ ¬ ii.

・Suppose that there is an augmenting path with respect to f.

・Can improve flow f by sending flow along this path.

・Thus, f is not a max flow. ▪

 34

[iii ⇒ i]

・Let f be a flow with no augmenting paths.

・Let A be set of nodes reachable from s in residual network Gf.

・By definition of A: s ∈ A.

・By definition of flow f: t ∉ A.

=
�

e Qmi Q7 A

c(e) � 0
<latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI=">AAACWXicbVDBThsxEPUupaRpKQGOvViNKtEDYRchgVRVAnHhSCWSIGWjyOvMgoXXXtnjKtFqP6NfwxU+AvEzeJMcmoQn2Xp6b8bjeWkhhcUoegnCjQ+bH7can5qfv2x/3Wnt7vWsdoZDl2upzW3KLEihoIsCJdwWBlieSuinD5e13/8LxgqtbnBawDBnd0pkgjP00qh19Jsmv2hiXT4qgSYIEyypdkh1Rit6UVF+AD/rksP6ipqjVjvqRDPQdRIvSJsscD3aDfaSseYuB4VcMmsHcVTgsGQGBZdQNRNnoWD8gd3BwFPFcrDDcrZZRX94ZUwzbfxRSGfq/x0ly62d5qmvzBne21WvFt/zBg6zs2EpVOEQFJ8PypykqGkdEx0LAxzl1BPGjfB/pfyeGcbRh7k0ZfZ2AXxpk3LilOB6DCuqxAkaVvkU49XM1knvuBNHnfjPSfv8bJFng3wj38kBickpOSdX5Jp0CSf/yCN5Is/BaxiEjbA5Lw2DRc8+WUK4/wZJQ7Me</latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI=">AAACWXicbVDBThsxEPUupaRpKQGOvViNKtEDYRchgVRVAnHhSCWSIGWjyOvMgoXXXtnjKtFqP6NfwxU+AvEzeJMcmoQn2Xp6b8bjeWkhhcUoegnCjQ+bH7can5qfv2x/3Wnt7vWsdoZDl2upzW3KLEihoIsCJdwWBlieSuinD5e13/8LxgqtbnBawDBnd0pkgjP00qh19Jsmv2hiXT4qgSYIEyypdkh1Rit6UVF+AD/rksP6ipqjVjvqRDPQdRIvSJsscD3aDfaSseYuB4VcMmsHcVTgsGQGBZdQNRNnoWD8gd3BwFPFcrDDcrZZRX94ZUwzbfxRSGfq/x0ly62d5qmvzBne21WvFt/zBg6zs2EpVOEQFJ8PypykqGkdEx0LAxzl1BPGjfB/pfyeGcbRh7k0ZfZ2AXxpk3LilOB6DCuqxAkaVvkU49XM1knvuBNHnfjPSfv8bJFng3wj38kBickpOSdX5Jp0CSf/yCN5Is/BaxiEjbA5Lw2DRc8+WUK4/wZJQ7Me</latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI=">AAACWXicbVDBThsxEPUupaRpKQGOvViNKtEDYRchgVRVAnHhSCWSIGWjyOvMgoXXXtnjKtFqP6NfwxU+AvEzeJMcmoQn2Xp6b8bjeWkhhcUoegnCjQ+bH7can5qfv2x/3Wnt7vWsdoZDl2upzW3KLEihoIsCJdwWBlieSuinD5e13/8LxgqtbnBawDBnd0pkgjP00qh19Jsmv2hiXT4qgSYIEyypdkh1Rit6UVF+AD/rksP6ipqjVjvqRDPQdRIvSJsscD3aDfaSseYuB4VcMmsHcVTgsGQGBZdQNRNnoWD8gd3BwFPFcrDDcrZZRX94ZUwzbfxRSGfq/x0ly62d5qmvzBne21WvFt/zBg6zs2EpVOEQFJ8PypykqGkdEx0LAxzl1BPGjfB/pfyeGcbRh7k0ZfZ2AXxpk3LilOB6DCuqxAkaVvkU49XM1knvuBNHnfjPSfv8bJFng3wj38kBickpOSdX5Jp0CSf/yCN5Is/BaxiEjbA5Lw2DRc8+WUK4/wZJQ7Me</latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI=">AAACWXicbVDBThsxEPUupaRpKQGOvViNKtEDYRchgVRVAnHhSCWSIGWjyOvMgoXXXtnjKtFqP6NfwxU+AvEzeJMcmoQn2Xp6b8bjeWkhhcUoegnCjQ+bH7can5qfv2x/3Wnt7vWsdoZDl2upzW3KLEihoIsCJdwWBlieSuinD5e13/8LxgqtbnBawDBnd0pkgjP00qh19Jsmv2hiXT4qgSYIEyypdkh1Rit6UVF+AD/rksP6ipqjVjvqRDPQdRIvSJsscD3aDfaSseYuB4VcMmsHcVTgsGQGBZdQNRNnoWD8gd3BwFPFcrDDcrZZRX94ZUwzbfxRSGfq/x0ly62d5qmvzBne21WvFt/zBg6zs2EpVOEQFJ8PypykqGkdEx0LAxzl1BPGjfB/pfyeGcbRh7k0ZfZ2AXxpk3LilOB6DCuqxAkaVvkU49XM1knvuBNHnfjPSfv8bJFng3wj38kBickpOSdX5Jp0CSf/yCN5Is/BaxiEjbA5Lw2DRc8+WUK4/wZJQ7Me</latexit>

Max-flow min-cut theorem

 35

original flow network G

s

t

A B

flow value
lemma

edge e = (v, w) with v ∈ B, w ∈ A
must have f(e) = 0

edge e = (v, w) with v ∈ A, w ∈ B
must have f(e) = c(e)

val(f) =
�

e Qmi Q7 A

f(e) �
�

e BM iQ A

f(e)

= cap(A, B)

=
�

e Qmi Q7 A

c(e) � 0
<latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI=">AAACWXicbVDBThsxEPUupaRpKQGOvViNKtEDYRchgVRVAnHhSCWSIGWjyOvMgoXXXtnjKtFqP6NfwxU+AvEzeJMcmoQn2Xp6b8bjeWkhhcUoegnCjQ+bH7can5qfv2x/3Wnt7vWsdoZDl2upzW3KLEihoIsCJdwWBlieSuinD5e13/8LxgqtbnBawDBnd0pkgjP00qh19Jsmv2hiXT4qgSYIEyypdkh1Rit6UVF+AD/rksP6ipqjVjvqRDPQdRIvSJsscD3aDfaSseYuB4VcMmsHcVTgsGQGBZdQNRNnoWD8gd3BwFPFcrDDcrZZRX94ZUwzbfxRSGfq/x0ly62d5qmvzBne21WvFt/zBg6zs2EpVOEQFJ8PypykqGkdEx0LAxzl1BPGjfB/pfyeGcbRh7k0ZfZ2AXxpk3LilOB6DCuqxAkaVvkU49XM1knvuBNHnfjPSfv8bJFng3wj38kBickpOSdX5Jp0CSf/yCN5Is/BaxiEjbA5Lw2DRc8+WUK4/wZJQ7Me</latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI=">AAACWXicbVDBThsxEPUupaRpKQGOvViNKtEDYRchgVRVAnHhSCWSIGWjyOvMgoXXXtnjKtFqP6NfwxU+AvEzeJMcmoQn2Xp6b8bjeWkhhcUoegnCjQ+bH7can5qfv2x/3Wnt7vWsdoZDl2upzW3KLEihoIsCJdwWBlieSuinD5e13/8LxgqtbnBawDBnd0pkgjP00qh19Jsmv2hiXT4qgSYIEyypdkh1Rit6UVF+AD/rksP6ipqjVjvqRDPQdRIvSJsscD3aDfaSseYuB4VcMmsHcVTgsGQGBZdQNRNnoWD8gd3BwFPFcrDDcrZZRX94ZUwzbfxRSGfq/x0ly62d5qmvzBne21WvFt/zBg6zs2EpVOEQFJ8PypykqGkdEx0LAxzl1BPGjfB/pfyeGcbRh7k0ZfZ2AXxpk3LilOB6DCuqxAkaVvkU49XM1knvuBNHnfjPSfv8bJFng3wj38kBickpOSdX5Jp0CSf/yCN5Is/BaxiEjbA5Lw2DRc8+WUK4/wZJQ7Me</latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI=">AAACWXicbVDBThsxEPUupaRpKQGOvViNKtEDYRchgVRVAnHhSCWSIGWjyOvMgoXXXtnjKtFqP6NfwxU+AvEzeJMcmoQn2Xp6b8bjeWkhhcUoegnCjQ+bH7can5qfv2x/3Wnt7vWsdoZDl2upzW3KLEihoIsCJdwWBlieSuinD5e13/8LxgqtbnBawDBnd0pkgjP00qh19Jsmv2hiXT4qgSYIEyypdkh1Rit6UVF+AD/rksP6ipqjVjvqRDPQdRIvSJsscD3aDfaSseYuB4VcMmsHcVTgsGQGBZdQNRNnoWD8gd3BwFPFcrDDcrZZRX94ZUwzbfxRSGfq/x0ly62d5qmvzBne21WvFt/zBg6zs2EpVOEQFJ8PypykqGkdEx0LAxzl1BPGjfB/pfyeGcbRh7k0ZfZ2AXxpk3LilOB6DCuqxAkaVvkU49XM1knvuBNHnfjPSfv8bJFng3wj38kBickpOSdX5Jp0CSf/yCN5Is/BaxiEjbA5Lw2DRc8+WUK4/wZJQ7Me</latexit><latexit sha1_base64="ZTUKVGmMjB/WcCE6Tg9AU4sscGI=">AAACWXicbVDBThsxEPUupaRpKQGOvViNKtEDYRchgVRVAnHhSCWSIGWjyOvMgoXXXtnjKtFqP6NfwxU+AvEzeJMcmoQn2Xp6b8bjeWkhhcUoegnCjQ+bH7can5qfv2x/3Wnt7vWsdoZDl2upzW3KLEihoIsCJdwWBlieSuinD5e13/8LxgqtbnBawDBnd0pkgjP00qh19Jsmv2hiXT4qgSYIEyypdkh1Rit6UVF+AD/rksP6ipqjVjvqRDPQdRIvSJsscD3aDfaSseYuB4VcMmsHcVTgsGQGBZdQNRNnoWD8gd3BwFPFcrDDcrZZRX94ZUwzbfxRSGfq/x0ly62d5qmvzBne21WvFt/zBg6zs2EpVOEQFJ8PypykqGkdEx0LAxzl1BPGjfB/pfyeGcbRh7k0ZfZ2AXxpk3LilOB6DCuqxAkaVvkU49XM1knvuBNHnfjPSfv8bJFng3wj38kBickpOSdX5Jp0CSf/yCN5Is/BaxiEjbA5Lw2DRc8+WUK4/wZJQ7Me</latexit>

Runtime of the algorithm

7

Analysis of Ford–Fulkerson algorithm (when capacities are integral)

Assumption. Every edge capacity c(e) is an integer between 1 and C.

 
Integrality invariant. Throughout Ford–Fulkerson, every edge flow f (e)  
and residual capacity cf (e) is an integer.

Pf. By induction on the number of augmenting paths. ▪
 
Theorem. Ford–Fulkerson terminates after at most val(f *) ≤ n C 
augmenting paths, where f * is a max flow.

Pf. Each augmentation increases the value of the flow by at least 1. ▪
 
Corollary. The running time of Ford–Fulkerson is O(m n C).
Pf. Can use either BFS or DFS to find an augmenting path in O(m) time. ▪
 
Integrality theorem. There exists an integral max flow f *.

Pf. Since Ford–Fulkerson terminates, theorem follows from integrality

invariant (and augmenting path theorem). ▪

 37

consider cut A = { s }
(assumes no parallel edges)

f(e) is an integer for every e

How to improve Ford-Fulkerson

algorithm

Why need to improve the algorithm?

8

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 11

v w

t

s

0

1

00

0
capacity

flow

100

100

10
0

10
0

0

initialize with 0 flow

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 12

0

00

1

0

0

1st augmenting path

1

1

1

100

100

10
0

10
0

t

s

v w

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 13

1

1

1

2nd augmenting path

0

0

1

1

1

0

100

100

10
0

10
0

t

s

v w

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 14

1

11

1

1

0

3rd augmenting path

2

2

1

100

100

10
0

10
0

t

s

v w

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 15

2

2

1

4th augmenting path

1

1

1

2

2

0

100

100

10
0

10
0

t

s

v w

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 16

. . .

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 17

99

1

99

0

199th augmenting path

10
0

10
0

1

99

99

100

100

10
0

10
0

t

s

v w

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 18

10
0

10
0

1

200th augmenting path

99

99

1

100

100

0

100

100

10
0

10
0

t

s

v w

Ford–Fulkerson algorithm: exponential-time example

Bad news. Number of augmenting paths can be exponential in input size.

 19

0

100

100

1

100

100

10
0

10
010

0

10
0

t

s

v w

Choosing good augmenting paths

Choose augmenting paths with:

・Max bottleneck capacity (“fattest”).

・Sufficiently large bottleneck capacity.

・Fewest edges.

 41

Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems

J A C K E D M O N D S

University of Waterloo, Waterloo, Ontario, Canada

AND

R I C H A R D M. K A R P

University of California, Berkeley, California

ABSTRACT. This paper presents new algori thms for the maximum flow problem, the Hitchcock
t r anspo r t a t i on problem, and the general min imum-cos t flow problem. Upper bounds on the
numbers of steps in these algori thms are derived, and are shown to compale favorably with
upper bounds on the numbers of steps required by earlier algori thms.

Firs t , the paper s ta tes the maximum flow problem, gives the Ford-Fulkerson labeling method
for its solution, and points out t h a t an improper choice of flow augment ing pa ths can lead to
severe computa t iona l difficulties. Then rules of choice t h a t avoid these difficulties are given.
We show tha t , if each flow augmenta t ion is made along an augment ing pa th having a minimum
number of arcs, then a maximum flow in an n-node network will be obta ined af te r no more than
~(n a - n) augmenta t ions ; and then we show tha t if each flow change is chosen to produce a
maximum increase in the flow value then, provided the capacit ies are integral , a maximum flow
will be de te rmined wi th in at most 1 + logM/(M--1) if(t, S) augmenta t ions , wheref*(t, s) is the
value of the maximum flow and M is the maximum number of arcs across a cut.

Next a new algor i thm is given for the minimum-cos t flow problem, in which all shor tes t -pa th
computa t ions are performed on networks wi th all weights nonnegat ive . In par t icular , this
a lgor i thm solves the n X n ass igmnent problem in O(n 3) steps. Following t h a t we explore a
" sca l ing" technique for solving a minimum-cost flow problem by t r ea t ing a sequence of derived
problems wi th "scaled down" capacit ies. I t is shown tha t , using this technique, the solution of
a I i i tchcock t r anspor t a t i on problem wi th m sources and n sinks, m ~ n, and maximum flow B,
requires at most (n + 2) log2 (B/n) flow augmenta t ions . Similar results are also given for the
general minimum-cost flow problem.

An abs t rac t s t a t ing the main results of the present paper was presented at the Calgary
In te rna t iona l Conference on Combinator ia l S t ruc tures and Thei r Applicat ions, J u n e 1969.
In a paper by l)inic (1970) a resul t closely related to the main resul t of Section 1.2 is obtained.
Dinic shows tha t , in a network wi th n nodes and p arcs, a maximum flow can be computed in
0 (n2p) pr imi t ive operat ions by an a lgor i thm which augments along shor tes t augment ing paths.

KEY WOl¢l)S AND PHP~ASES: network flows, t r anspor ta t ion problem, analysis of algori thms

CR CATEGOI{.IES: 5.3, 5.4, 8.3

Copyr ight © 1972, Association for Comput ing Machinery , Inc.
General permission to republish, bu t not for profit, all or par t of this mater ia l is granted,

provided t ha t reference is made to this publ ica t ion, to its date of issue, and to the fact tha t
r epr in t ing privileges were granted by permission of the Association for Comput ing Machinery.
Authors ' addresses : J . Edmonds, Depa r tmen t of Combinator ics and Optimizat ion, Univers i ty
of Waterloo, Waterloo, Ontario, Canada; R. M. Karp, College of Engineering, Operations
Research Center , Univers i ty of California, Berkeley, CA 94720; the l a t t e r au thor ' s research has
been par t ia l ly suppor ted by the Nat iona l Science Founda t ion raider Gran t GP-15473 with the
Univers i ty of California.

Jc~urnal of the Association for Computing Machinery, Vol. 19, No. 2, Apri| 1972. pp. 248-264.

Edmonds-Karp 1972 (USA) Dinitz 1970 (Soviet Union)

invented in response to a class
exercises by Adel’son-Vel’skiĭ

how to find?

next

ahead

Capacity scaling algorithm

9

Capacity-scaling algorithm

Overview. Choosing augmenting paths with “large” bottleneck capacity.

・Maintain scaling parameter Δ.

・Let Gf (Δ) be the part of the residual network containing 
only those edges with capacity ≥ Δ.

・Any augmenting path in Gf (Δ) has bottleneck capacity ≥ Δ.

 42Gf

t

s

1

122

102

17
0

11
0

Gf (Δ), Δ = 100

t

s

122

102

17
0

11
0

though not necessarily largest

Capacity-scaling algorithm

 43

CAPACITY-SCALING(G)
__

FOREACH edge e ∈ E : f (e) ← 0.

Δ ← largest power of 2 ≤ C. 

WHILE (Δ ≥ 1)

Gf (Δ) ← Δ-residual network of G with respect to flow f .
WHILE (there exists an s↝t path P in Gf (Δ))

f ← AUGMENT(f, c, P).

Update Gf (Δ).

Δ ← Δ / 2. 

RETURN f.
__

Δ-scaling phase

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

 
Invariant. The scaling parameter Δ is a power of 2.

Pf. Initially a power of 2; each phase divides Δ by exactly 2. ▪
 
Integrality invariant. Throughout the algorithm, every edge flow f (e) and  
residual capacity cf (e) is an integer.

Pf. Same as for generic Ford–Fulkerson. ▪
 
Theorem. If capacity-scaling algorithm terminates, then f is a max flow.

Pf.

・By integrality invariant, when Δ = 1 ⇒ Gf (Δ) = Gf .

・Upon termination of Δ = 1 phase, there are no augmenting paths.

・Result follows augmenting path theorem ▪

 44

Capacity-scaling algorithm: analysis of running time

Lemma 1. There are 1 + ⎣log2 C⎦ scaling phases.

Pf. Initially C / 2 < Δ ≤ C; Δ decreases by a factor of 2 in each iteration. ▪
 
Lemma 2. Let f be the flow at the end of a Δ-scaling phase.  
Then, the max-flow value ≤ val(f) + m Δ.

Pf. Next slide.

 
Lemma 3. There are ≤ 2m augmentations per scaling phase.

Pf.

・Let f be the flow at the beginning of a Δ-scaling phase.

・Lemma 2 ⇒ max-flow value ≤ val(f) + m (2 Δ).

・Each augmentation in a Δ-phase increases val(f) by at least Δ. ▪
 
Theorem. The capacity-scaling algorithm takes O(m2 log C) time.

Pf.

・Lemma 1 + Lemma 3 ⇒ O(m log C) augmentations.

・Finding an augmenting path takes O(m) time. ▪
 45

or equivalently,
at the end

of a 2Δ-scaling phase

Shortest argumenting paths

10

Shortest augmenting path

Q. How to choose next augmenting path in Ford–Fulkerson?

A. Pick one that uses the fewest edges.

 48

SHORTEST-AUGMENTING-PATH(G)

FOREACH e ∈ E : f (e) ← 0.

Gf ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path in Gf)

P ← BREADTH-FIRST-SEARCH(Gf).

f ← AUGMENT(f, c, P).

Update Gf.

RETURN f.

can find via BFS

Shortest augmenting path: overview of analysis

Lemma 1. The length of a shortest augmenting path never decreases.

Pf. Ahead.

 
Lemma 2. After at most m shortest-path augmentations, the length of a

shortest augmenting path strictly increases.

Pf. Ahead.

 
Theorem. The shortest-augmenting-path algorithm takes O(m2 n) time.

Pf.

・O(m) time to find a shortest augmenting path via BFS.

・There are ≤ m n augmentations.
- at most m augmenting paths of length k
- at most n−1 different lengths ▪

 49

Lemma 1 + Lemma 2

augmenting paths are simple paths

number of edges

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:

・ℓ(v) = number of edges in shortest s↝v path.

・LG = (V, EG) is the subgraph of G that contains only those edges (v, w) ∈ E

with ℓ(w) = ℓ(v) + 1.

 50

s t

graph G

s t

level graph LG

ℓ= 0 ℓ= 1 ℓ= 2 ℓ= 3

Network flow: quiz 5

Which edges are in the level graph of the following digraph? 

A. D→F.

B. E→F.

C. Both A and B.

D. Neither A nor B.

 51

C

D

A E F

B

0 1

1

2

3

3

source sink

Shortest augmenting path: analysis

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:

・ℓ(v) = number of edges in shortest s↝v path.

・LG = (V, EG) is the subgraph of G that contains only those edges (v, w) ∈ E

with ℓ(w) = ℓ(v) + 1.

 
 
Key property. P is a shortest s↝v path in G iff P is an s↝v path in LG.

 52

level graph LG

s t

ℓ= 0 ℓ= 1 ℓ= 2 ℓ= 3

Shortest augmenting path: analysis

Lemma 1. The length of a shortest augmenting path never decreases.

・Let f and f ʹ be flow before and after a shortest-path augmentation.

・Let LG and LG ʹ be level graphs of Gf and Gf ʹ .
・Only back edges added to Gf ′ 

(any s↝t path that uses a back edge is longer than previous length) ▪

 53
s t

level graph LG′

ℓ= 0

level graph LG

ℓ= 1 ℓ= 2 ℓ= 3

s t

Lemma 2. After at most m shortest-path augmentations, the length of a

shortest augmenting path strictly increases.

・At least one (bottleneck) edge is deleted from LG per augmentation.

・No new edge added to LG until shortest path length strictly increases. ▪

Shortest augmenting path: analysis

 54

ℓ= 0

level graph LG

ℓ= 1 ℓ= 2 ℓ= 3

s t

level graph LG′

s t

Shortest augmenting path: review of analysis

Lemma 1. Throughout the algorithm, the length of a shortest augmenting

path never decreases.

 
Lemma 2. After at most m shortest-path augmentations, the length of a  
shortest augmenting path strictly increases.

 
Theorem. The shortest-augmenting-path algorithm takes O(m2 n) time.

 55

Better algorithm for max flow

problems

Augmenting-path algorithms: summary

 72

year method # augmentations running time

1955 augmenting path n C O(m n C)

1972 fattest path m log (mC) O(m2 log n log (mC))

1972 capacity scaling m log C O(m2 log C)

1985 improved capacity scaling m log C O(m n log C)

1970 shortest augmenting path m n O(m2 n)

1970 level graph m n O(m n2)

1983 dynamic trees m n O(m n log n)

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

fat paths

shortest paths

Maximum-flow algorithms: theory highlights

 73

year method worst case discovered by

1951 simplex O(m n2 C) Dantzig

1955 augmenting paths O(m n C) Ford–Fulkerson

1970 shortest augmenting paths O(m n2) Edmonds–Karp, Dinitz

1974 blocking flows O(n3) Karzanov

1983 dynamic trees O(m n log n) Sleator–Tarjan

1985 improved capacity scaling O(m n log C) Gabow

1988 push–relabel O(m n log (n2 / m)) Goldberg–Tarjan

1998 binary blocking flows O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 compact networks O(m n) Orlin

2014 interior-point methods Õ(m m1/2 log C) Lee–Sidford

2016 electrical flows Õ(m10/7 C1/7) Mądry

20xx

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C

Google Optimazation Tools

11

Maximum-flow algorithms: Google

 78

References

Robert Sedgewick & Kevin Wayne. Algorithms, 4th Edition.

Addison-Wesley.

Slides at https://algs4.cs.princeton.edu/lectures/

Kleinberg, J., & Tardos, E. (2006). The algorithm design. Pearson,

Addison-Wesley.

Slides at

https://www.cs.princeton.edu/∼wayne/kleinberg-tardos/
Martin Skutella. An Introduction to Network Flows over time.

12

	The problem in the Cold War
	Definition of the problem
	Ford-Fulkerson algorithm
	The algorithm
	The correctness of the algorithm
	Runtime of the algorithm

	How to improve Ford-Fulkerson algorithm
	Capacity scaling algorithm
	Shortest argumenting paths

	Better algorithm for max flow problems
	Google Optimazation Tools

