
Algorithm Analyses

Hoang Anh Quan

June 22, 2018

Outline

The first ‘algorithm’

What is an algorithm?
Definition
Expressing an algorithm

How to judge an algorithm?
Space complexity
Time complexity

Best, Average, and Worst-case
complexities

Case complexity
Useful notations

Dominance relations

The Big Oh, Omega, Theta
notations

Comparing running times &
algorithms

Algorithms analyses
Best, Worst, and
Average-case analyses
Problem: Minimum distance
Brute-force approach - an
O(n2) algorithm

Additions
Non-deterministic algorithms
Quantum algorithms

Abstract

This is a brief introduction to algorithm analyses. Firstly, the
report introduce a definition of an algorithm and how it can be
performed. Secondly, we consider five properties of an
algorithm and the criteria to judge it to be efficient or not.
Nextly, some notations are used to define the growing speed of
time execution of algorithms. Finally, we analyze algorithms to
sovle the proplem finding the shortest distance between two
points in the set of given points in plane.

The first ‘algorithm’

Problem: find the real zeros of the equation: ax2 + bx + c = 0

Cases Set of zeros

a = 0
b = 0

c = 0 R
c 6= 0 ∅

b 6= 0 ∀c
{−c

b

}
a 6= 0,∆ = b2 − 4ac

∆ > 0
{
−b+

√
∆

2a , −b−
√

∆
2a

}
∆ < 0 ∅

Table 1: Cases and their real zeros

What is an algorithm?

Definition

Algorithm is a finite list of well-defined instructions for calculating
a function.

Input Output
Algorithm

Something magically beautiful happens when a sequence
of commands and decisions is able to marshal a collec-
tion of data into organized patterns or to discover hidden
structure.

Donald Knuth

Expressing an algorithm
1An algorithm may be expressed in a number of ways, including:

-Natural language: verbose and ambiguous;

-Flowchart: avoid most issues of ambiguity,
largely standardized;

-Pseudo-code: avoids most issues of ambiguity,
resembles common elements of
programming languages,
no specific agreement on syntax;

-Programming language: need to express low-level deatails
that are not necessary for a
high-level understanding.

1Paraphrased slide 5,
http://courses.cs.vt.edu/cs2104/Fall12/notes/T16 Algorithms.pdf

Expressing an algorithm

Problem: Demonstrate an algorithm to calculate the absolute
value, denoted |.|, of a given real number.

Expressing an algorithm

Problem: Demonstrate an algorithm to calculate the absolute
value, denoted |.|, of a given real number.
a) Natural language: If x is a nonnegative number, then the
absolute value of x is x . If x is a negative number, then the
absolute value of x is −x .

Expressing an algorithm

b) Flowchart:

Input: x

x > 0

|x | = x |x | = −x

Output: |x |

yes no

Expressing an algorithm

c) Pseudo-code:

x ← input
if x > 0 then

abs ← x
else
abs ← −x

end if
return abs

Expressing an algorithm

d) Programming language:

Figure 1: Algorithm written in C++

How to judge an algorithm?

Space complexity

Space complexity is the amount of memory used by the algorithm
(including the input values to the algorithm) to execute and
produce the result. It contains:
-Instruction space: It’s the amount of memory used to save the
compiled version of instructions.
-System stack: If a function A() calls function B() inside it, then
all the variables of the function A() will get stored on the system
stack temporarily, while the function B() is called and executed
inside the funciton A().
-Data space: Amount of space used by the variables and constants.

Space complexity

Instruction space System stack Data space

Memory usage

Most importance

Space complexity

Type Size
bool, char 1 byte
short 2 bytes
float, int 4 bytes
double, long 8 bytes

Table 2: Size of variable types in C++

Time complexity

System independent effects:
-Algorithm
-Input data
System dependent effects:
-Hardware: CPU, memory, cache,...
-Software: complier, interpreter, garbage collector,...
-System: operating system, network, other apps,...
Mathematical models for running time.

Total running time = sum of cost x frequency for all operations

T = c1.f1 + c2.f2 + ...+ cn.fn

Time complexity

Operations Cost Frequency
1st c1 f1
2nd c2 f2
3rd c3 f3
...

Table 3: Cost & frequency of operations

2The RAM Model of Computation:
-Each simple operation (+,-,*,/,if,call) takes exactly one time step.
-Loops and subroutines are not considered simple operations.
-Each memory access takes exactly one time step.

2Page 31, The algorithm design manual, Steven S. Skiena

Time complexity

Running time
of an algorithm

Number of steps
the algorithm takes

RAM Model

If we assume that our RAM executes a given number of steps per
second, which means it takes T seconds to executes a step, then:

Running time = T x number of steps

The RAM Model is not true. However, it is useful in practice.

Best, Average, and Worst-case complexities

3Using the RAM model of computation, we can count how many
steps our algorithm takes on any given input instance by executing
it. However, to understand how good or bad an algorithm is in
general, we must know how it works over all instances.

3Page 32, The algorithm design manual, Steven S. Skiena

Case complexity

Type Definition Input Result

Best case
the minimum number of

steps taken in any
instance of size n

easi-
est

a goal for
all inputs

Worst case
the maximum number of

steps taken in any
instance of size n

most
diffi-
cult

a guarantee
for all
inputs

Average
case

the average number of
steps over all instances

of size n

ran-
dom

a way to
predict

performance

Table 4: Type of case complexity

Useful notations

The best, worst, and average-case time complexities for any given
algorithm are numerical functions over the size of possible problem
instances. However, it is hard to deal with these complicated
functions. Such as

f (n) = n! + n4 + log n

Dominance relations

We say g dominates f , denoted as g � f , when lim
n→∞

f (n)
g(n) = 0.

Chain of dominance

n!� 2n � n3 � n2 � n log n� n�
√
n� log n� 1

Using dominance relations, we can simplify our analysis by ignoring
some terms without impact our overall judgement of algorithms.
For instance, f (n) = n! + n4 + log n is ‘the same’ as g(n) = n!, for
large enough n.

The Big Oh, Omega, Theta notations

There are notations to make the comparing functions easier. They
are O,Ω, and Θ.
•f (n) = O(g(n)) if there exists some constant c such that
f (n) 6 c · g(n), for large enough n.(N)
•f (n) = Ω(g(n)) if there exists some constant c such that
f (n) > c · g(n), for large enough n.
•f (n) = Θ(g(n)) if there exists some constant c1 and c2 such that
c1 · g(n) 6 f (n) 6 c · g(n), for large enough n.

The Big Oh, Omega, Theta notations

Abuse of notations
Some consider O,Ω, and Θ to be abuse of notations.
O(n) = O(n2) is true but O(n2) = O(n) is not. To be more
precise, for instance, O(g(n)) is the class of all functions f (n)
satisfy (N). In that case, f (n) ∈ O(g(n))
Knuth pointed out that ”mathematicians customarily use the equal
sign ’=’ as they use the word ’is’ in English: Aristotle is a man,
but a man isn’t necessarily Aristotle.”

Comparing running times & algorithms

This CPU has a frequency of 1.6GHz then this means that it can
produce 1.6 billion cycles per second. So we can assume an
average computer can perform 1 billion operations in a second.

Comparing running times & algorithms

With that assumption, now we can estimate the running time by
knowing the complexity of an algorithms4.

Figure 2: Time executed with given complexities

4Page 38, The algorithm design manual, Steven S. Skiena

Algorithms analyses

Best, Worst, and Average-case analyses

Example 1: Given n real numbers a1; a2; ...; an. Point out the index
i such that

ai = min{aj |j = 1, ..., n; aj > 0}.

Algorithm: Create a loop with index i from 1 to n to find the
minimum value of a1, a2, ..., an. If it exists ai = 0 then break
the loop.
Analyses:
-Best case: 1 step = O(1) with the input (0; 0; ...; 0).
-Worst case: n steps = O(n) with the input (1; 1; ...; 1).
-Average case:

+If there is no ‘0’ in the given input, the algorithm executes
in n steps.

+If there is a ‘0’ in the given input, the algorithm stops
where the first ‘0’ takes place.
On average, the algorithm stops after n steps, which is O(n).

Best, Worst, and Average-case analyses

Example 2: Given n real numbers a1; a2; ...; an which belong to the
set {0; 1; 2}. Point out a index i such that ai = 0.

Algorithm: Create a loop with index i from 1 to n to test
whether ai = 0 or not.
Analyses:
-Best case: 1 step = O(1) with the input (0; 0; ...; 0).
-Worst case: n steps = O(n) with the input (2; 2; ...; 2).
-Average case: 3 steps = O(1).
In each step, the algorithm have a 1

3 chance of stopping, a 2
3

chance of moving to next step (if it‘s not the end).
The average number of steps executed by the algorithm is
calculated by the following expression

1

3
·

n∑
i=1

(
2

3

)i−1

· i +

(
2

3

)n
· n = 3

Best, Worst, and Average-case analyses

Example 2: Given n real numbers a1; a2; ...; an which belong to the
set {0; 1; 2}. Point out a index i such that ai = 0.

Begin of algorithm

Step 1

Stop after 1 step Step 2

Stop after 2 steps Step 3

Stop after
3 steps

...

1/3 2/3

1/3 2/3

1/3 2/3

Problem

Find the smallest distance between two points
of given n points in plane.5

5Page 51, Algorithm design, Jon Kleinberg & Eva Tardos

Brute-force approach - an O(n2) algorithm

0

0.
5 1

1.
5 2

2.
5

·1
04

0

0.5

1

1.5

2

Number of points N

T
im

e
ex

ec
u

te
d
T

(s
)

Figure 3: Chart showing the relation between number of points
and time executed of the brute-force algorithm

Brute-force approach - an O(n2) algorithm

6.
5 7

7.
5 8

8.
5 9

9.
5 10

10
.5

−6

−5

−4

−3

−2

−1

0

1

2

lnN

ln
T

Figure 4: ln-ln chart

Brute-force approach - an O(n2) algorithm

By using least square method, we can guess the following relation
between N and T

lnT = 1.95lnN − 19.06

T = 5.28 · 10−9N1.95

Additions

Non-deterministic algorithms
Given a particular input, a non-deterministic algorithm is an
algorithm which does not always produce the same output after
passing through the same sequence of states.

Algorithms6 Upper bound
of running time

Certainty

Brute-force
algorithm

O(
√
n) 100%

AKS test (2002) O((log n)6+ε) 100%

Miller-Robin test O(k · (log n)3)
4−k chance
misjudge a

composite number

Table 5: Primality test

6Wikipedia

Quantum algorithms

Algorithms
to factor an integer N

Time complexity

Shor’s quantum
algorithm O((logN)2(loglogN)(logloglogN)

General number field
sieve O(ε1.9(log N)1/3(log log N)2/3))

Table 6: Primality test

Reference

Intro Problem Solving in Computer Science,
http://courses.cs.vt.edu/cs2104/Fall12/notes/

T16 Algorithms.pdf

Skiena, S. S. (2008). The algorithm design manual (2nd ed.).
Springer.

Kleinberg, J., & Tardos, E. (2006). The algorithm design.
Pearson, Addison Wesley.

	The first `algorithm'
	What is an algorithm?
	Definition
	Expressing an algorithm

	How to judge an algorithm?
	Space complexity
	Time complexity

	Best, Average, and Worst-case complexities
	Case complexity
	Useful notations

	Comparing running times & algorithms
	Algorithms analyses
	Best, Worst, and Average-case analyses
	Problem: Minimum distance
	Brute-force approach - an O(n2) algorithm

	Additions
	Non-deterministic algorithms
	Quantum algorithms

